Joining and Sealing - Fabrication of Microreactors Made from Metals and Ceramic - Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

2. Fabrication of Microreactors Made from Metals and Ceramic

2.8. Joining and Sealing

Joining of ceramic materials should only involve materials with similar properties. Especially, the thermal expansion coefficient is a crucial point while joining either ceramic materials to each other or, even worse, ceramics to metals. Ideal joining of ceramics to each other is done in the green state before firing. During the firing process, the ceramic is bound together tightly to form a single ceramic body. Another possibility is soldering with, for example, glass–ceramic sealants. Here, the working temperature of the device is limited by the melting temperature of the sealant. Reversible assembling and sealing with clamping technologies or gluing are also possible. Conventional seals such as polymer O-rings or metal gaskets may be used as well in metal technology. The adaptation of ceramic microstructure devices to metallic process equipment should be done as far away from high temperatures as possible. Due to the very different thermal expansion coefficients of both material classes, problems will most likely occur here. So, the sealing used should be designed to minimize tensile stresses as far as possible. For more details, see Refs [1, 6, 29–42].

References

1. Madou, M. (1997) Fundamentals of Microfabrication, CRC Press, Boca Raton, FL.

2. Menz, W. and Mohr, J. (1997) Mikrosystemtechnik Fuer Ingenieure, Wiley-VCH Verlag GmbH, Weinheim, Germany.

3. Eigler, H. and Beyer, W. (1996) Moderne Produktionsprozesse der Elektrotechnik, Elektronik und Mikrosystemtechnik, Expert Verlag, Renningen, Germany.

4. Brandner, J.J. et al. (2006) Chapter 10, in Micro Process Engineering, Advanced Micro & Nanosystems, vol. 5 (eds H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J. Korvink, and O. Tabata), Wiley-VCH Verlag GmbH, Weinheim, Germany.

5. Brandner, J.J., Bohn, L., Schygulla, U., Wenka, A., and Schubert, K. (2003) Microreactors: Epoch-Making Technology for Synthesis (ed. J.I. Yoshida), MCPT 2001, CMC Publishing Company, Tokyo, Japan, pp. 75–87, 213–223.

6. Kolb, G., Pennemann, H., and Tiemann, D. (2010) Mass-production issues of micro-structured fuel processors for distributed energy generation. Parallel Sessions Book 3: Hydrogen Production Technologies – Part 2, Proceedings of the 18th World Hydrogen Energy Conference 2010 (WHEC 2010), May 16–21, 2010, Essen, Germany.

7. CoPiride (2012) http://www.imm-mainz.de/index.php?id=2127. COPIRIDE - Verbesserte Wettbewerbsfähigkeit durch Prozessintensivierung in der Chemischen Industrie; accessed on Jan 28th, 2013.

8. Knitter, R. and Dietrich, Th. (2006) Chapter 12, in Micro Process Engineering, Advanced Micro & Nanosystems, vol. 5 (eds H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J. Korvink, and O. Tabata), Wiley-VCH Verlag GmbH, Weinheim, Germany.

9. Petzow, G. (1994) Metallographisches, Keramographisches und Plastographisches Ätzen, Gebrüder Bornträger, Berlin, Germany.

10. Harris, T.W. (1976) Chemical Milling, Clarendon Press, Oxford, UK.

11. Vittoriosi, A., Hecht, K., and Brandner, J.J. (2012) Surface characterization for microstructured systems: methods and examples, in Jahrbuch Oberflächentechnik 2012, vol. 68, Leuze, Bad Saulgau, Germany.

12. Slocum, A.H. (1992) Precision machine design: macromachine design philosophy and its applicability to the design of micromachines. Proceedings of IEEE MEMS 1992, Travemünde, Germany.

13. Boothroyd, G. and Knight, W.A. (1989) Fundamentals of Machining and Machine Tools, Marcel Dekker, New York.

14. Suryaprakash, M.V. (2004) Precision Engineering: Copen 2003-04, Narosa Publishing House, New Delhi, India.

15. Walker, J.R. (2004) Machining Fundamentals: From Basic to Advanced Techniques, Goodheart-Willcox Co. Inc., Tinley Park, IL.

16. Shaw, M.C. (1984) Metal Cutting Principles, Clarendon Press, Oxford, UK.

17. DeVries, W.R. (1992) Analysis of Material Removal Processes, Springer, New York.

18. Chryssolouris, G. (1991) Laser Machining, Springer, New York.

19. Vansteenkiste, G., Boudeau, N., Leclerc, H., Barriere, T., Celin, J.C., Carmes, C., Roques, N., Millot, C., Benoit, C., and Boilat, C. (2004) Investigations in direct tooling for micro-technology with SLS. Proceedings of LANE2004, Erlangen, Germany, pp. 425–434.

20. Fischer, P., Blatter, A., Romano, V., and Weber, H.P. (2005) Highly precise pulsed selective laser sintering of metal powders. Laser Phys. Lett., 2, 48–55.

21. Brandner, J.J., Hansjosten, E., Anurjew, E., Pfleging, W., and Schubert, K. (2007) Microstructure devices generation by selective laser melting. SPIE Photonics West, January 25–27, 2007, San Jose, CA.

22. Ehrfeld, W., Gärtner, C., Golbig, K., Hessel, V., Konrad, R., Löwe, H., Richter, T., and Schulz, C. (1997) Microreaction Technology, Proceedings of the 1st International Conference on Microreaction Technology (ed. W. Ehrfeld), Springer, Berlin, Germany, pp. 72–90.

23. Kolb, G., Cominos, V., Drese, K., Hessel, V., Hofmann, C., Löwe, H., Wörz, O., and Zapf, R. (2002) Proceedings of the 6th International Conference on Microreaction Technology, March 10–14, 2002, AIChE, New Orleans, LA (eds P. Baselt, U. Eul, R.S. Wegeng, I. Rinard, and B. Hoch), pp. 61–69.

24. Ziogas, A., Löwe, H., Küpper, M., and Ehrfeld, W. (2000) Microreaction Technology: Proceedings of the 3rd International Conference on Microreaction Technology (ed. W. Ehrfeld), Springer, Berlin, Germany, pp. 136–150.

25. Meyer, H., Crämer, K., Kurtz, O., Herber, R., Friz, W., Schwiekendick, C., Ringtunatus, O., and Madry, C. (2002) Patent Application DE 10251658 A1.

26. Pfeifer, P., Görke, O., Schubert, K., Martin, D., Herz, S., Horn, U., and Gräbener, Th. (2005) MicroMotive – development and fabrication of miniaturised components for gas generation in fuel cell systems. Proceedings of the 8th International Conference on Microreaction Technology (IMRET 8), April 10–14, 2005, Atlanta, GA.

27. Paul, B.K., Hasan, H., Dewey, T., Alman, D., and Wilson, R.D. (2002) Proceedings of the 6th International Conference on Microreaction Technology, March 10–14, 2002, AIChE, New Orleans, LA (eds P. Baselt, U. Eul, R.S. Wegeng, I. Rinard, and B. Hoch), pp. 202–211.

28. Bier, W., Keller, W., Linder, G., Seidel, D., and Schubert, K. (1990) Symposium Volume, DSC vol. 19, ASME, New York, pp. 189–197.

29. Heule, M., Vuillemin, S., and Gauckler, L.J. (2003) Powder-based ceramic meso and microscale fabrication processes. Adv. Eng. Mater., 15, 1237–1245.

30. Yu, Z.Y., Rakurjar, K.P., and Tandon, A. (2004) Study of 3D micro-ultrasonic machining. J. Manuf. Sci. Eng., Trans. ASME, 126, 727–732.

31. Knitter, R., Günther, E., Maciejewski, U., and Odemer, C. (1994) Preparation of ceramic microstructures. cfi/Ber. DKG, 71, 549–556.

32. Mutsuddy, B.C. and Ford, R.G. (1995) Ceramic Injection Molding, Chapman & Hall, London, UK.

33. Griffith, M.L. and Halloran, J.W. (1996) Freeform fabrication of ceramics via stereo lithography. J. Am. Ceram. Soc., 79, 2601–2608.

34. Blazdell, P.F., Evans, J.R.G., Edirisinghe, M.J., Shaw, P., and Binstead, M.J. (1995) The computer aided manufacture of ceramics using multiplayer jet printing. J. Mater. Sci. Lett., 14, 1562–1565.

35. Agrarwala, M.K., Bandyopadhyay, A., van Weeren, R., Safari, A., Danforth, S.C., Langrana, N., Jamalabad, V.R., and Whalen, P.J. (1996) FDC, rapid fabrication of structural component. Am. Ceram. Soc. Bull., 75, 60–65.

36. Evans, J.R.G. (1996) Chapter 8: Injection moulding, in Processing of Ceramics, Part 1, Materials Science and Technology, vol. 17a (ed. R.J. Brook), Wiley-VCH Verlag GmbH, Weinheim, Germany.

37. Bauer, W. and Knitter, R. (2002) Development of a rapid prototyping process chain for the production of ceramic microcomponents. J. Mater. Sci., 37, 3127–3140.

38. Mistler, R.E. (1995) Chapter 5: The principles of tape casting and tape casting applications, in Ceramic Processing (eds R.A. Terpstra, P.P.A.C. Pex, and A.H.de Vries), Chapman & Hall, London, UK.

39. Ritzhaupt-Kleissl, H.J., von Both, H., Dauscher, M., and Knitter, R. (2005) Chapter 15: Further ceramic replication techniques, in Microengineering of Metals and Ceramics, Advanced Micro & Nanosystems, vol. 4 (eds H. Baltes, O. Brand, G.K. Fedder, C. Hierold, J. Korvink, and O. Tabata), Wiley-VCH Verlag GmbH, Weinheim, Germany.

40. Su, B., Button, T.W., Schneider, A., Singleton, L., and Prewett, P. (2002) Embossing of 3D ceramic microstructures. Microsyst. Technol., 8, 359–362.

41. Haas-Santo, K., Görke, O., Pfeifer, P., and Schubert, K. (2002) Catalyst coatings for microstructure reactors. Chimia, 56, 605–610.

42. Hessel, V. and Löwe, H. (2002) Mikroverfahrenstechnik: komponenten – anlagenkonzeptionen – anwenderakzeptanz. Chem. Ing. Tech., 1–2 (74), 17–30,3, 185–207,4, 381–400.