Conclusions and Outlook - Automation in Microreactor Systems - Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

4. Automation in Microreactor Systems

4.6. Conclusions and Outlook

The integration of in-line analysis in this and other recent works highlights the increasing interest in generating fundamental process understanding. Combining automated microreactor systems with computer modeling should greatly increase the efficiency of chemical investigations from the earliest stages through production scale up. At present, there is still a significant barrier to entry into microreactor research due to the cost of both the reactors and the necessary peripheral equipment. However, there have been significant recent improvements in this area. The examples presented revolved around a single design concept, with the primary differences arising from external control and measurement techniques. Integrating continuous IR measurement into the entire flow path of a microreactor could vastly improve the efficiency of these investigations [24]. Combination of an IR array reactor with liquid handling capabilities could allow for following the full conversion curve, including reactive intermediates, of integer experiments, but there are still significant challenges to these goals. Moreover, in cases where IR is not applicable and impurity information is critical, HPLC will have to be used. Fortunately, the continuous evolution of faster, high-pressure HPLC units will reduce the cycle time for automated optimization and kinetic analysis.

Acknowledgment

The authors thank the Novartis-MIT Center for Continuous Manufacturing for support of studies underlying the chapter.

References

1. deMello, A.J. (2006) Nature, 442, 394–402.

2. Hessel, V. and Löwe, H. (2005) Chem. Eng. Technol., 28, 267–284.

3. Jähnisch, K., Hessel, V., Löwe, H., and Baerns, M. (2004) Angew. Chem., Int. Ed., 43, 406–446.

4. Maluf, N. (2000) An Introduction to Microelectromechanical Systems Engineering, Artech House.

5. Welty, J., Wicks, C., Wilson, R., and Rorrer, G. (2001) Fundamentals of Momentum, Heat, and Mass Transfer, 4th edn, John Wiley & Sons, Inc., Hoboken, NJ.

6. Schwalbe, T., Kursawe, A., and Sommer, J. (2005) Chem. Eng. Technol., 28, 408–419.

7. Günther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M.A., and Jensen, K.F. (2005) Langmuir, 21, 1547–1555, PMID: 15697306.

8. Yen, B.K.H., Günther, A., Schmidt, M.A., Jensen, K.F., and Bawendi, M.G. (2005) Angew. Chem., Int. Ed., 44, 5447–5451.

9. Nagy, K.D., Shen, B., Jamison, T.F., and Jensen, K.F. (2012) Org. Process Res. Dev., 16, 976–981. doi: 10.1021/op200349f.

10. Hessel, V., Angeli, P., Gavriilidis, A., and Löwe, H. (2005) Ind. Eng. Chem. Res., 44, 9750–9769.

11. Pennemann, H., Watts, P., Haswell, S.J., Hessel, V., and Löwe, H. (2004) Org. Process Res. Dev., 8, 422–439.

12. Jensen, K.F. (2001) Chem. Eng. Sci., 56, 293–303.

13. Sahoo, H.R., Kralj, J.G., and Jensen, K.F. (2007) Angew. Chem., Int. Ed., 46, 5704–5708.

14. Hartman, R.L., Sahoo, H.R., Yen, B.C., and Jensen, K.F. (2009) Lab Chip, 9, 1843–1849.

15. Trachsel, F., Hutter, C., and von Rohr, P.R. (2008) Chem. Eng. J., 135, 309–316.

16. Müller, G., Gaupp, T., Wahl, F., and Wille, G. (2006) Chimia, 60, 618–622.

17. Kralisch, D. and Kreisel, G. (2007) Chem. Eng. Sci., 62, 1094–1100.

18. Food and Drug Administration (2004) Guidance for Industry, PAT.

19. Plumb, K. (2005) Chem. Eng. Res. Des., 83, 730–738.

20. Jensen, K.F. (2006) MRS Bull., 2, 101–107.

21. Krishnadasan, S., Brown, R.J.C., deMello, A.J., and deMello, J.C. (2007) Lab Chip, 7, 1434–1441.

22. McMullen, J.P. and Jensen, K.F. (2010) Annu. Rev. Anal. Chem., 3, 19–42.

23. Mechtilde, S., Eduard, S., and Andreas, F. (2006) J. Phys. Conf. Ser., 28, 115.

24. Chan, K.L.A., Niu, X., deMello, A.J., and Kazarian, S.G. (2011) Anal. Chem., 83, 3606–3609.

25. Beers, K.J. (2007) Numerical Methods for Chemical Engineering, Cambridge University Press.

26. Sun, W. and Yuan, Y.-X. (2006) Optimization Theory and Methods (ed. P. Pardalos), Springer.

27. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983) Science, 220, 671–680.

28. Hibbert, D.B. (1993) Chemom. Intell. Lab. Syst., 19, 319–329.

29. Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004) Evol. Comput., 12, 273–302.

30. Nelder, J.A. and Mead, R. (1965) Comput. J., 7, 308–313.

31. Kuo, M.T., Rubin, D.I., and Wright, B.S. (1966) Ind. Eng. Chem. Res., 5, 404–408.

32. Huyer, W. and Neumaier, A. (2008) ACM Trans. Math. Software, 35 (9), 1–9: 25.

33. Bedore, M.W., Zaborenko, N., Jensen, K.F., and Jamison, T.F. (2010) Org. Process Res. Dev., 14, 432–440.

34. Zaborenko, N., Bedore, M.W., Jamison, T.F., and Jensen, K.F. (2011) Org. Process Res. Dev., 15, 131–139.

35. McMullen, J.P. and Jensen, K.F. (2010) Org. Process Res. Dev., 14, 1169–1176.

36. Bula, W.P., Verboom, W., Reinhoudt, D.N., and Gardeniers, H.J.G.E. (2007) Lab Chip, 7, 1717–1722.

37. Bakore, G.V., Banerjee K.K., and Shanker, R.Z. (1965) Phys. Chem. Neue Fol., 45, 129–135.

38. McMullen, J.P., Stone, M.T., Buchwald, S.L., and Jensen, K.F. (2010) Angew. Chem., Int. Ed., 49, 7076–7080.

39. Moore, J.S. and Jensen, K.F. (2012) Org. Process Res. Dev., 16, 1409–1415.

40. Moore, J.S. (2012) Kinetic Modeling and Automated Optimization in Microreactor Systems. Ph.D. thesis, Massachusetts Institute of Technology.

41. DS, Series Sampling, Technology, Mettler Toledo, LLC, http://us.mt.com/us/en/home/products/L1_AutochemProducts/L2_in-situSpectrocopy.html, Accessed Nov. 7, 2010.

42. Brodmann, T., Koos, P., Metzger, A., Knochel, P., and Ley, S.V. (2012) Org. Process Res. Dev., 16, 1102–1113. doi: 10.1021/op200275d.

43. Carter, C.F., Lange, H., Ley, S.V., Baxendale, I.R., Wittkamp, B., Goode, J.G., and Gaunt, N.L. (2010) Org. Process Res. Dev., 14, 393–404.

44. Littler, B.J., Looker, A.R., and Blythe, T.A. (2010) Org. Process Res. Dev., 14, 1512–1517.

45. Amarnath, V., Anthony, D.C., Amarnath, K., Valentine, W.M., Wetterau, L.A., and Graham, D.G. (1991) J. Org. Chem., 56, 6924–6931.

46. Mothana, B. and Boyd, R.J. (2007) J. Mol. Struct., 811, 97–107.

47. De, S. (2008) Catal. Lett., 124, 174–177.

48. Li, C.-S., Tsai, Y.-H., Lee, W.-C., and Kuo, W.-J. (2010) J. Org. Chem., 75, 4004–4013.

49. Balme, G. (2004) Angew. Chem., Int. Ed., 43, 6238–6241.

50. Li, J-.J. and Corey, E.J. (eds) (2005) Name Reactions in Heterocyclic Chemistry, John Wiley & Sons, Inc., Hoboken, NJ.

51. Knorr, L. (1885) Ber. Dtsch. Chem. Ges., 18, 299–311.

52. Paal, C. (1885) Ber. Dtsch. Chem. Ges., 18, 367–371.

53. Amarnath, V., Amarnath, K., Valentine, W.M., Eng, M.A., and Graham, D.G. (1995) Chem. Res. Toxicol., 8, 234–238.

54. McMullen, J.P. and Jensen, K.F. (2011) Org. Process Res. Dev., 15, 398–407.

55. Dewar, R.S. and Pyron, M.J.S. (1970) J. Am. Chem. Soc., 92, 3098–3103.

56. Hoffmann, W., Kang, Y., Mitchell, J.C., and Snowden, M.J. (2007) Org. Process Res. Dev., 11, 25–29.

57. Hill, P.D.H. (1978) Technometrics, 20, 15–21.

58. Reizman, B.J. and Jensen, K.F. (2012) Org. Process Res. Dev., 16, 1770–1782.