Microwave Chemistry - Irradiation Processes in Organic Chemistry - Introduction - March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition (2013)

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition (2013)

Part I. Introduction

Chapter 7. Irradiation Processes in Organic Chemistry

7.C. Microwave Chemistry

In 1986, independent work by Gedye et al.,105 as well as Majetich and co-workers106 reported the use of microwave irradiation for organic reactions. Gedye described four different types of reactions, including the hydrolysis of benzamide to benzoic acid under acidic conditions, and all reactions showed significant rate enhancements when compared to the same reactions done at reflux conditions.107 Majetich, Giguere and co-workers106 reported rate enhancements for microwave-promoted Diels–Alder, Claisen, and ene reactions. Many publications108 have appeared that describe chemical synthesis promoted by microwave irradiation, including many review articles109 and books.110

Microwaves are electromagnetic waves (see Sec. 7.A.i) and there are electric and magnetic field components. Charged particles start to migrate or rotate as the electric field is applied,111 which leads to further polarization of polar particles. Because the concerted forces applied by the electric and magnetic components of microwaves are rapidly changing in direction (2.4 × 109 s−1), warming occurs.111 In general, the most common frequencies used for microwave dielectric heating112 are 918 MHz and 2.45 GHz113 (wavelengths of 33.3 and 12.2 cm, respectively), which are in the region between the IR and radiowave wavelengths in the electromagnetic spectrum. For chemical reactions done with microwave irradiation, rapid heating is usually observed,114 and if a solvent is used superheating of that solvent was always observed.112 Agitation is usually important.115 In the early days of microwave chemistry, reactions were often done in open vessels, but also in sealed Teflon or glass vessels using unmodified domestic household ovens.116 Dielectric heating is direct so if the reaction matrix has a sufficiently large dielectric loss tangent, and contains molecules possessing a dipole moment, a solvent is not required. The use of dry-reaction microwave chemistry is increasingly popular.117

Microwave dielectric heating was initially categorized by thermal effects and nonthermal effects.118 “Thermal effects are those which are caused by the different temperature regime which can be created due to microwave dielectric heating. Nonthermal effects are effects,119 which are caused by effects specifically inherent to the microwaves and are not caused by different temperature regimes.”111 Some claimed special effects120 in microwave chemistry, such as lowering of Gibbs energy of activation, but later study under careful temperature control indicated no special rate effects.121 When conventional microwave ovens were used, temperature control was difficult, particularly when reactions are carried out in closed reaction vessels. The main contributing factor to any rate acceleration caused by microwave dielectric heating seems to be due to a thermal effect. The thermal effect may be due to a faster initial heating rate or to the occurrence of local regions with higher temperatures.111

Conventional microwave ovens are used less often for microwave chemistry today. Microwave reactors for chemical synthesis are commercially available and widely used in academia and in industry. These instruments have built-in magnetic stirring, direct temperature control of the reaction mixture, shielded thermocouples or IR sensors, and the ability to control temperature and pressure by regulating microwave output power.

The applications of microwave chemistry to organic chemistry are literally too numerous to mention. A few representative examples will be given to illustrate the scope and utility. The combined use of microwaves and ultrasound is important in process chemistry and organic synthesis.122 Microwave chemistry is widely used in synthesis,123 including organocatalyzed asymmetric reactions.124 Examples include the Heck reaction (Reaction 13-10),125 the Suzuki reaction (Reaction 13-12),126 the Sonogashira reaction (Reaction 13-13),127Ullman-type couplings (Reaction 13-3),128 cycloaddition reactions (Reactions 15-5815-66),129 dihydroxylation (Reaction 15-48),130 and the Mitsunobu reaction (Reaction 10-23).131 There are a multitude of other reactions types from earlier literature that can be found in the cited review articles. When microwave chemistry is an important feature of a chemical reaction, this fact will be noted in the reactions presented in Chapters 10–19.

Notes

1. See Michl, J.; Bonaimgiimg-Koutecky, V. Electronic Aspects of Organic Photochemistry, Wiley, NY, 1990; Scaiano, J.C. Handbook of Organic Photochemistry, 2 vols., CRC Press, Boca Raton, FL, 1989; Coxon, J.M.; Halton, B. Organic Photochemistry, 2nd ed., Cambridge University Press, Cambridge, 1987; Coyle, J.D. Photochemistry in Organic Synthesis, Royal Society of Chemistry, London, 1986, Introduction to Organic Photochemistry, Wiley, NY, 1986; Horspool, W.M. Synthetic Organic Photochemistry, Plenum, NY, 1984; Margaretha, P. Preparative Organic Photochemistry, Top. Curr. Chem. 1982, 103; Turro, N.J. Modern Molecular Photochemistry, W.A. Benjamin, NY, 1978; Rohatgi-Mukherjee. K.K. Fundamentals of Photochemistry, Wiley, NY, 1978; Barltrop, J.A.; Coyle, J.D. Principles of Photochemistry, Wiley, NY, 1978; Scaiano, J.; Johnston, L.J. Org. Photochem. 1989, 10, 309. For a history of photochemistry, see Roth, H.D. Angew. Chem. Int. Ed. 1989, 28, 1193; Braslavsky, S.E.; Houk, K.N. Pure Appl. Chem. 1988, 60, 1055. See also, the series, Advances in Photochemistry, Organic Photochemistry, and Excited States.

2. Wessig, P. Angew. Chem. Int. Ed. 2006, 45, 2168.

3. Zimmerman, H.E. Pure Appl. Chem. 2006, 78, 2193.

4. Formerly, millimicrons (mμ) were frequently used; numerically they are the same as nanometers.

5. For monographs, see Zollinger, H. Color Chemistry, VCH, NY, 1987; Gordon, P.F.; Gregory, P. Organic Chemistry in Colour, Springer, NY, 1983; Griffiths, J. Colour and Constitution of Organic Molecules, Academic Press, NY, 1976. See also, Fabian, J.; Zahradník, R. Angew. Chem. Int. Ed. 1989, 28, 677.

6. See Kurreck, H. Angew. Chem. Int. Ed. 1993, 32, 1409.

7. See Koziar, J.C.; Cowan, D.O. Acc. Chem. Res. 1978, 11, 334.

8. An n electron is one in an unshared pair.

9. See Malkin, Yu.N.; Kuz'min, V.A. Russ. Chem. Rev. 1985, 54, 1041.

10. Bohlmann, F.; Mannhardt, H. Chem. Ber. 1956, 89, 1307.

11. For a review of the azo group as a chromophore, see Rau, H. Angew. Chem. Int. Ed.1973, 12, 224.

12. These values are from Silverstein, R.M.; Bassler, G.C. Spectrometric Identification of Organic Compounds, 2nd ed., John Wiley, NY, 1967, pp. 164–165. Also see Jaffé, H.H.; Orchin, M. Theory and Applications of Ultraviolet Spectroscopy, Wiley, NY, 1962, p. 257.

13. See Pitts, Jr., J.N.; Wilkinson, F.; Hammond, G.S. Adv. Photochem. 1963, 1, 1; Porter, G.B.; Balzani, V.; Moggi, L. Adv. Photochem. 1974, 9, 147; Braslavsky, S.E.; Houk, K.N. Pure Appl. Chem. 1988, 60, 1055.

14. For reviews of the structures of excited states, see Zink, J.I.; Shin, K.K. Adv. Photochem. 1991, 16, 119; Innes, K.K. Excited States 1975, 2, 1; Hirakawa, A.Y.; Masamichi, T. Vib. Spectra Struct. 1983, 12, 145.

15. Ingold, C.K.; King, G.W. J. Chem. Soc. 1953, 2702, 2704, 2708, 2725, 2745. For a review of acetylene photochemistry, see Coyle, J.D. Org. Photochem. 1985, 7, 1.

16. Merer, A.J.; Mulliken, R.S. Chem. Rev. 1969, 69, 639.

17. Garrison, B.J.; Schaefer III, H.F.; Lester Jr., W.A. J. Chem. Phys. 1974, 61, 3039; Streitwieser Jr., A.; Kohler, B. J. Am. Chem. Soc. 1988, 110, 3769. For reviews of excited states of formaldehyde, see Buck, H.M. Recl. Trav. Chim. Pays-Bas 1982, 101, 193, 225; Moule, D.C.; Walsh, A.D. Chem. Rev. 1975, 75, 67.

18. See Ireland, J.F.; Wyatt, P.A.H. Adv. Phys. Org. Chem. 1976, 12, 131.

19. Weller, A. Z. Phys. Chem. (Frankfurt am Main) 1955, 3, 238, Discuss. Faraday Soc. 1959, 27, 28.

20. Lubitz, W.; Lendzian, F.; Bittl, R. Acc. Chem. Res. 2002, 35, 313.

21. See Turro, N.J.; Ramamurthy, V.; Cherry, W.; Farneth, W. Chem. Rev. 1978, 78, 125.

22. See Lin, S.H. Radiationless Transitions, Academic Press, NY, 1980. For reviews, see Kommandeur, J. Recl. Trav. Chim. Pays-Bas 1983, 102, 421; Freed, K.F. Acc. Chem. Res. 1978, 11, 74.

23. For other exceptions, see Sugihara, Y.; Wakabayashi, S.; Murata, I.; Jinguji, M.; Nakazawa, T.; Persy, G.; Wirz, J. J. Am. Chem. Soc. 1985, 107, 5894, and references cited therein. See also, Turro, N.J.; Ramamurthy, V.; Cherry, W.; Farneth, W. Chem. Rev. 1978, 78, 125, see pp. 126–129.

24. Also see Li, R.; Lim, E.C. Chem. Phys. 1972, 57, 605; Sharf, B.; Silbey, R. Chem. Phys. Lett. 1970, 5, 314; Schlag, E.W.; Schneider, S.; Fischer, S.F. Annu. Rev. Phys. Chem. 1971, 22, 465, pp. 490. There is evidence that ISC can also occur from the S2 state of some molecules: Samanta, A. J. Am. Chem. Soc. 1991, 113, 7427; Ohsaku, M.; Koga, N.; Morokuma, K. J. Chem. Soc. Perkin Trans. 2 1993, 71.

25. Moore, W.M.; Hammond, G.S.; Foss, R.P. J. Am. Chem. Soc. 1961, 83, 2789.

26. See Lower, S.K.; El-Sayed, M.A. Chem. Rev. 1966, 66, 199. For a review of physical and chemical processes of triplet states see Wagner, P.J.; Hammond, G.S. Adv. Photochem. 1968, 5, 21.

27. See Albini, A. Synthesis, 1981, 249; Turro, N.J.; Dalton, J.C.; Weiss, D.S. Org. Photochem. 1969, 2, 1. Ionic liquids may be soluble photosensitizers. See Hubbard, S.C.; Jones, P.B. Tetrahedron 2005, 61, 7425.

28. In certain cases excited states can be produced directly in ordinary reactions. See White, E.H.; Miano, J.D.; Watkins, C.J.; Breaux, E.J. Angew. Chem. Int. Ed. 1974, 13, 229.

29. For another table of this kind, see Calvert, J.G.; Pitts, Jr., J.N. Photochemistry, Wiley, NY, 1966, p. 89.

30. See Bennett, R.G.; Schwenker, R.P.; Kellogg, R.E. J. Chem. Phys. 1964, 41, 3040; Ermolaev, V.L.; Sveshnikova, E.B. Opt. Spectrosc. (USSR) 1964, 16, 320.

31. SeeKavarno, G.J.; Turro, N.J. Chem. Rev. 1986, 86, 401; Mariano, P.S. Org. Photochem. 1987, 9, 1.

32. For a discussion of pyrylogens as an electron-transfer sensitizer, see Clennan, E.L.; Liao, C.; Ayokosok, E. J. Am. Chem. Soc. 2008, 130, 7552.

33. See Engel, P.S.; Monroe, B.M. Adv. Photochem. 1971, 8, 245.

34. Verhoeven, J.W. Pure Appl. Chem. 1996, 68, 2223 (see p. 2268).

35. See Samanta, S.; Mishra, B.K.; Pace, T.C.S.; Sathyamurthy, N.; Bohne, C.; Moorthy, J.N. J. Org. Chem. 2006, 71, 4453.

36. See Aspari, P.; Ghoneim, N.; Haselbach, E.; von Raumer, M.; Suppan, P.; Vauthey, E. J. Chem. Soc., Faraday Trans. 1996, 92, 1689; Cohen, S.G.; Parola, A.; Parsons, Jr., G.H. Chem. Rev. 1973, 73, 141; von Raumer, M.; Suppan, P.; Haselbach, E. Helv. Chim. Acta 1997, 80, 719.

37. Inbar, S.; Linschitz, H.; Cohen, S.G. J. Am. Chem. Soc. 1982, 104, 1679; Bobrowski, K.; Marciniak, B.; Hug, G.L. J. Photochem. Photobiol. A: Chem. 1994, 81, 159; Wakasa, M.; Hayashi, H. J. Phys. Chem. 1996, 100, 15640.

38. Marciniak, B.; Bobrowski, K.; Hug, G.L. J. Phys. Chem. 1993, 97, 11937.

39. Becker, H.-D. J. Org. Chem. 1967, 32, 2115; 2124; 2140.

40. Lathioor, E.C.; Leigh, W.J.; St. Pierre, M.J. J. Am. Chem. Soc. 1999, 121, 11984.

41. See Wagner, P.J.; Hammond, G.S.; Wagner, P.J.; Hammond, G.S. Adv. Photochem. 1968, 5, 21. For other reviews of triplet states, see Top. Curr. Chem. 1975, Vols. 54 and 55.

42. Adapted from Calvert, J.G.; Pitts, Jr., J.N. Photochemistry, Wiley, NY, 1966, p. 367.

43. For a different kind of classification of photochemical reactions, see Dauben, W.G.; Salem, L.; Turro, N.J. Acc. Chem. Res. 1975, 8, 41. For reviews of photochemical reactions where the molecules are geometrically constrained, see Ramamurthy, V. Tetrahedron 1986, 42, 5753; Ramamurthy, V.; Eaton, D.F. Acc. Chem. Res. 1988, 21, 300; Turro, N.J.; Cox, G.S.; Paczkowski, M.A. Top. Curr. Chem. 1985, 129, 57.

44. Turro, N.J.; Lechtken, P.; Lyons, A.; Hautala, R.T.; Carnahan, E.; Katz, T.J. J. Am. Chem. Soc. 1973, 95, 2035.

45. See Ninomiya, I.; Naito, T. Photochemical Synthesis, Academic Press, NY, 1989; Coyle, J.D. Photochemistry in Organic Synthesis, Royal Society of Chemistry, London, 1986; Schönberg, A. Preparative Organic Photochemistry, Springer, Berlin, 1968.

46. See DeLuca, L.; Giacomelli, G.; Porcu, G.; Taddei, M. Org. Lett. 2001, 3, 855.

47. For reviews, see Jackson, W.M.; Okabe, H. Adv. Photochem. 1986, 13, 1; Kresin, V.Z.; Lester, Jr., W.A. Adv. Photochem. 1986, 13, 95.

48. See Formosinho, S.J.; Arnaut, L.G. Adv. Photochem. 1991, 16, 67; Newton, R.F. in Coyle, J.D. Photochemistry in Organic Synthesis, Royal Society of Chemistry, London, 1986, pp. 39–60; Lee, E.K.C.; Lewis, R.S. Adv. Photochem. 1980, 12, 1; Coyle, J.D.; Carless, H.A.J. Chem. Soc. Rev. 1972, 1, 465; Bérces, T. in Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 5; Elsevier, NY, 1972, pp. 277–380; Turro, N.J.; Dalton, J.C.; Dawes, K.; Farrington, G.; Hautala, R.; Morton, D.; Niemczyk, M.; Shore, N. Acc. Chem. Res. 1972, 5, 92; Wagner, P.J. Top. Curr. Chem. 1976, 66, 1. Also see Weiss, D.S. Org. Photochem. 1981, 5, 347; Rubin, M.B. Top. Curr. Chem. 1985, 129, 1; 1969, 13, 251; Childs, R.F. Rev. Chem. Intermed. 1980, 3, 285. C=S compounds, see Coyle, J.D. Tetrahedron 1985, 41, 5393; Ramamurthy, V. Org. Photochem. 1985, 7, 231. C=N compounds, see Mariano, P.S. Org. Photochem. 1987, 9, 1.

49. See Adam, W.; Oppenländer, T. Angew. Chem. Int. Ed. 1986, 25, 661; Dürr, H.; Ruge, B. Top. Curr. Chem. 1976, 66, 53; Drewer, R.J. in Patai, S. The Chemistry of the Hydrazo, Azo, and Azoxy Groups, pt. 2, Wiley, NY, 1975, pp. 935–1015.

50. See Wagner, P.J. in de Mayo, P. Rearrangements in Ground and Excited States, Vol. 3, Academic Press, NY, 1980, pp. 381–444; Acc. Chem. Res. 1971, 4, 168. See Niu, Y.; Christophy, E.; Hossenlopp, J.M. J. Am. Chem. Soc.1996, 118, 4188 for a new view of Norrish Type II elimination.

51. See Wilson, R.M. Org. Photochem. 1985, 7, 339, pp. 349–373; Scaiano, J.C.; Lissi, E.A.; Encina, M.V. Rev. Chem. Intermed. 1978, 2, 139. Also see Wagner, P.J. Acc. Chem. Res. 1989, 22, 83.

52. This mechanism was proposed by Yang, N.C.; Yang, D.H. J. Am. Chem. Soc. 1958, 80, 2913. The diradical intermediate has been trapped: Wagner, P.J.; Zepp, R.G. J. Am. Chem. Soc. 1972, 94, 287; Wagner, P.J.; Kelso, P.A.; Zepp, R.G. J. Am. Chem. Soc. 1972, 94, 7480; Adam, W.; Grabowski, S.; Wilson, R.M. Chem. Ber. 1989, 122, 561. See also, Caldwell, R.A.; Dhawan, S.N.; Moore, D.E. J. Am. Chem. Soc. 1985, 107, 5163.

53. See Casey, C.P.; Boggs, R.A. J. Am. Chem. Soc. 1972, 94, 6457.

54. For a review of the photochemistry of carboxylic acids and acid derivatives, see Givens, R.S.; Levi, N. in Patai, S. The Chemistry of Acid Derivatives, pt. 1; Wiley, NY, 1979, pp. 641–753.

55. See Hwu, J.R.; Chen, B.-L.; Huang, L.W.; Yang, T.-H. J. Chem. Soc. Chem. Commun. 1995, 299.

56. Wagner, P.J.; Zhou, B. J. Am. Chem. Soc. 1988, 110, 611.

57. See Morrison, H.A. in Feuer, H. The Chemistry of the Nitro and Nitroso Groups, pt. 1, Wiley, NY, 1969, pp. 165–213, 185–191; Kaupp, G. Angew. Chem. Int. Ed. 1980, 19, 243. See also, Yip, R.W.; Sharma, D.K. Res. Chem. Intermed. 1989, 11, 109.

58. See Sonnet, P.E. Tetrahedron 1980, 36, 557; Schulte-Frohlinde, D.; Görner, H. Pure Appl. Chem. 1979, 51, 279; Saltiel, J.; Charlton, J.L. in de Mayo, P. Rearrangements in Grund and Excited States, Vol. 3, Academic Press, NY, 1980, pp. 25–89; Saltiel, J.; Chang, D.W.L.; Megarity, E.D.; Rousseau, A.D.; Shannon, P.T.; Thomas, B.; Uriarte, A.K. Pure Appl. Chem. 1975, 41, 559; Saltiel, J.; D'Agostino, J.; Megarity, E.D.; Metts, L.; Neuberger, K.R.; Wrighton, M.; Zafiriou, O.C. Org. Photochem. 1979, 3, 1. Also see Leigh, W.J.; Srinivasan, R. Acc. Chem. Res. 1987, 20, 107; Steinmetz, M.G. Org. Photochem. 1987, 8, 67; Adam, W.; Oppenländer, T. Angew. Chem. Int. Ed.1986, 25, 661; Johnson, R.P. Org. Photochem. 1985, 7, 75.

59. For a review of the photoisomerization of stilbenes, see Waldeck, D.H. Chem. Rev. 1991, 91, 415.

60. Kawamura, Y.; Takayama, R.; Nishiuchi, M.; Tsukayama, M. Tetrahedron Lett. 2000, 41, 8101.

61. Deyrup, J.A.; Betkouski, M. J. Org. Chem. 1972, 37, 3561.

62. Akabori, S.; Kumagai, T.; Habata, Y.; Sato, S. J. Chem. Soc. Perkin Trans. 1 1989, 1497; Shinkai, S.; Yoshioka, A.; Nakayama, H.; Manabe, O. J. Chem. Soc. Perkin Trans. 2 1990, 1905. For a review, see Shinkai, S.; Manabe, O. Top. Curr. Chem. 1984, 121, 67.

63. Haberfield, P. J. Am. Chem. Soc. 1987, 109, 6177.

64. Haberfield, P. J. Am. Chem. Soc. 1987, 109, 6178.

65. See Beer, P.D. Chem. Soc. Rev. 1989, 18, 409. For an example not involving a macrocycle, see Feringa, B.L.; Jager, W.F.; de Lange, B.; Meijer, E.W. J. Am. Chem. Soc. 1991, 113, 5468.

66. Sajimon, M.C.; Ramaiah, D.; Muneer, M.; Rath, N.P.; George, M.V. J. Photochem. Photobiol. A Chem. 2000, 136, 209.

67. Sajimon, M.C.; Ramaiah, D.; Thomas, K.G.; George, M.V. J. Org. Chem. 2001, 66, 3182.

68. Eaton, P.E. Acc. Chem. Res. 1968, 1, 50. For a review of the photochemistry of α,β-unsaturated ketones, see Schuster, D.I. in Patai, S.; Rappoport, Z. The Chemistry of Enones, pt. 2, Wiley, NY, 1989, pp. 623–756.

69. For a review, see Calvert, J.G.; Pitts, Jr., J.N. Photochemistry, Wiley, NY, 1966, pp. 580–670.

70. Mason, T.J., Ed. Advances in Sonochemistry, JAI Press, NY, 1990–1994; Vols. 1–3, Price, G.J., Ed. Current Trends in Sonochemistry, Royal Society of Chemistry, Cambridge, UK, 1992; Suslick, K.S. Science 1990, 247, 1439; Suslick, K.S. Ultrasound: Its Chemical, Physical, and Biological Effects, VCH, NY, 1988; Young, F.R. Cavitation, McGraw-Hill, NY, 1989; Brennen, C.E. Cavitation and Bubble Dynamics, Oxford University Press, Oxford, UK, 1995; Anbar, M. Science 1968, 161, 1343. For a discussion of ultrasound in the chemistry of heterocycles, see Cella, R.; Stefani, H.A. Tetrahedron 2009, 65, 2619.

71. Apfel, R.E., in Edmonds, P. Methods in Experimental Physics, Academic Press, New York, 1981; Vol. 19; Makino, K.; Mossoba, M.M.; Riesz, P. J. Am. Chem. Soc. 1982, 104, 3537.

72. Stottlemeyer, T.R.; Apfel, R.E. J. Acoust. Soc. Am. 1997, 102, 1413.

73. Suslick, K.S.; Crum, L.A. In Sonochemistry and Sonoluminescence, Handbook of Acoustics, Crocker, M.J., Ed., Wiley, NY, 1998; Chapter 23; Leighton, T.G. The Acoustic Bubble, Academic Press, London, 1994; Chapter 4; Brennen, C.E. Cavitation and Bubble Dynamics, Oxford University Press, 1995, Chapters 1–4; Hua, I.; Hoffmann, M.R. Environ. Sci. Technol. 1997, 31, 2237.

74. Suslick, K.S.; Didenko, Y.T.; Fang, M.M.; Hyeon, T.; Kolbeck, K.J.; McNamara, III, W.B.; Mdleleni, M.M.; Wong, M. Philos. Trans. R. Soc. London A 1999, 357, 335. For problems of sonochemistry and cavitation, see Margulis, M.A. Ultrasonics Sonochemistry, 1994, 1, S87.

75. Suslick, K.S.; Hammerton, D.A.; Cline, Jr., R.E. J. Am. Chem. Soc. 1986, 108, 5641.

76. Didenko, Y.T.; McNamara, III, W.B.; Suslick, K.S. J. Am. Chem. Soc. 1999, 121, 5817.

77. Colussi, A. J.; Hoffmann, M.R. J. Phys. Chem. A. 1999, 103, 11336.

78. Colussi, A.J.; Weavers, L.K.; Hoffmann, M.R. J. Phys. Chem. A 1998, 102, 6927.

79. Segebarth, N.; Eulaerts, O.; Reisse, J.; Crum, L.A.; Matula, T.J. J. Phys. Chem. B. 2002, 106, 9181.

80. Dekerckheer, C.; Bartik, K.; Lecomte, J.-P.; Reisse, J. J. Phys. Chem. A. 1998, 102, 9177.

81. Elpiner, I. E. Ultrasound: Physical, Chemical, and Biological Effects, Consultants Bureau, NY, 1964.

82. Sollner, K. Chem. Rev. 1944, 34, 371.

83. Suslick, K.S.; Schubert, P.F.; Goodale, J.W. J. Am. Chem. Soc. 1981,103, 7342; Sehgal, C.; Yu, T.J.; Sutherland, R.G.; Verrall, R.E. J. Phys. Chem. 1982, 86, 2982; Sehgal, C.M.; Wang, S.Y. J. Am. Chem. Soc. 1981, 103, 6606.

84. Han, B.-H.; Boudjouk, P. J. Org. Chem. 1982, 47, 5030; Boudjouk, P.; Han, B.-H. Tetrahedron Lett. 1981, 22, 3813; Han, B.-H.; Boudjouk, P. J. Org. Chem. 1982, 47, 751; Boudjouk, P.; Han, B.-H.; Anderson, K.R. J. Am. Chem. Soc. 1982, 104, 4992; Boudjouk, P.; Han, B.-H. J. Catal. 1983, 79, 489; Racher, S.; Klein, P. J. Org. Chem. 1981, 46, 3558; Regen, S.L.; Singh, A. J. Org. Chem. 1982, 47, 1587; Kegelaers, Y.; Eulaerts, O.; Reisse, J.; Segebarth, N. Eur. J. Org. Chem. 2001, 3683.

85. Suslick, K.S.; Gawienowski, J.J.; Schubert, P.F.; Wang H.H. J. Phys. Chem. 1983, 87, 2299.

86. Mason, T.J. Practical Sonochemistry: User's Guide to Applications in Chemistry and Chemical Engineering, Ellis Horwood, West Sussex, 1991, pp. 43–46; Broeckaert, L.; Caulier, T.; Fabre, O.; Maerschalk, C.; Reisse, J.; Vandercammen, J.; Yang, D.H.; Lepoint, T.; Mullie, F. Current Trends in Sonochemistry, Price, G.J., Ed., Royal Society of Chemistry, Cambridge, 1992, p. 8; Mason, T.J.; Lorimer, J.P.; Bates, D.M.; Zhao, Y. Ultrasonics Sonochemistry 1994, 1, S91; Mason, T.J.; Lorimer, J.P.; Bates, D.M. Ultrasonics 1992, 30, 40.

87. Kimura, T.; Sakamoto, T.; Leveque, J.-M.; Sohmiya, H.; Fujita, M.; Ikeda, S.; Ando, T. Ultrasonics Sonochemistry 1996, 3, S157.

88. Synthetic Organic Sonochemistry Luche, J.-L. (Universite de Savoie, France), Plenum Press, NY. 1998; Luche, J.-L. Ultrasonics Sonochemistry, 1996, 3, S215.

89. Adewuyi, Y.G. Ind. Eng. Chem. Res. 2001, 40, 4681.

90. Boudjouk, P.; Sooriyakumaran, R.; Han, B.H. J. Org. Chem. 1986, 51, 2818, and Ref. 1 therein.

91. Regen, S.L.; Singh, A. J. Org. Chem. 1982, 47, 1587.

92. Suslick, K.S.; Goodale, J.W.; Schubert, P.F.; Wang, H.H. J. Am. Chem. Soc. 1983, 105, 5781.

93. Wang, M.-L.; Rajendran, V. J. Mol. Catalysis A: Chemical 2005, 244, 237.

94. Han, B.H.; Boudjouk, P. J. Org. Chem. 1982, 47, 5030.

95. Nebois, P.; Bouaziz, Z.; Fillion, H.; Moeini, L.; Piquer, Ma.J.A.; Luche, J.-L.; Riera, A.; Moyano, A.; Pericàs, M.A. Ultrasonics Sonochemistry 1996, 3, 7.

96. Me¡ iarová, M.; Kiripolsky, M.; Toma, Š. Ultrasonics Sonochemistry 2005, 12, 401.

97. Me¡ iarová, M.; Toma, S.; Magdolen, P. Ultrasonics Sonochemistry 2003, 10, 265.

98. Nakamura, E.; Machii, D.; Inubushi, T. J. Am. Chem. Soc. 1989, 111, 6849.

99. Vinatoru, M.; Stavrescua, R.; Milcoveanu, A.B.; Toma, M.; Mason, T.J. Ultrasonics Sonochemistry 2002, 9, 245.

100. Manzo, P.G.; Palacios, S.M.; Alonso, R.A. Tetrahedron Lett. 1994, 35, 677.

101. McNulty, J.; Steere, J.A.; Wolf, S. Tetrahedron Lett. 1998, 39, 8013.

102. Kimura, T.; Fujita, M.; Sohmiya, H.; Ando, T. Ultrasonics Sonochemistry 2002, 9, 205.

103. Montaña, A.M.; Grima, P.M. Tetrahedron Lett. 2001, 42, 7809.

104. Kardos, N.; Luche, J.-L. Carbohydrate Res. 2001, 332, 115.

105. Gedye, R. N.; Smith, F. E.; Westaway, K. C. Can. J. Chem. 1987, 66, 17.

106. Giguere, R.J.; Bray, T.; Duncan, S.M.; Majetich, G. Tetrahedron Lett. 1986, 27, 4945.

107. Taken from Horeis, G.; Pichler, S.; Stadler, A.; Gössler, W.; Kappe, C.O. Microwave-Assisted Organic Synthesis - Back to the Roots, Fifth International Electronic Conference on Synthetic Organic Chemistry (ECSOC-5), 2001. (available at http://www.mdpi.org/ecsoc-5.htm).

108. Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.

109. Majetich, G.; Karen, W. in Kingston, H.M.; Haswell, S.J. Microwave-Enhanced Chemistry. Fundamentals, Sample Preparation, and Applications, American Chemical Society, Washington, DC, 1997, p. 772; Bose, A.K.; Manhas, M.S.; Banik, B.K.; Robb, E.W. Res. Chem. Intermed. 1994, 20, 1; Majetich, G.; Hicks, R. Res. Chem. Intermed. 1994, 20, 61; Strauss, C.R.; Trainor, R.W. Aust. J. Chem. 1995, 48, 1665; Caddick, S. Tetrahedron 1995, 51,10403; Mingos, D M.P. Res. Chem. Intermed. 1994, 20, 85; Berlan, J. Rad. Phys. Chem. 1995, 45, 581; Fini, A.; Breccia, A. Pure Appl. Chem. 1999, 71, 573.

110. Kingston, H.M.; Haswell, S.J. Microwave-Enhanced Chemistry. Fundamentals, Sample Preparation, and Applications, American Chemical Society, 1997; Loupy, A. Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 2002; Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing, Matthews, NC, 2002; Lidström, P., Tierney, J.P. Microwave-Assisted Organic Synthesis, Blackwell Scientific, 2005; Kappe, C.O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry, Wiley–VCH, Weinheim, 2005.

111. Galema, S.A. Chem. Soc. Rev. 1997, 26, 233.

112. Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Chem. Soc. Rev. 1998, 27, 213.

113. This frequencey is usually applied in domestic microwave ovens.

114. See Hoogenboom, R.; Wilms, T.F.A.; Erdmenger, T.; Schubert, U.S. Austr. J. Chem. 2009, 62, 236.

115. Moseley, J.D.; Lenden, P.; Thomson, A.D.; Gilday, J.P. Tetrahedron Lett. 2007, 48, 6084.

116. Caddick, S. Tetrahedron 1995, 51, 10403.

117. Varma, R. S. Green Chem. 1999, 43; Kidawi, M. Pure Appl. Chem. 2001, 73, 147; Varma, R. S. Pure Appl. Chem. 2001, 73, 193.

118. Langa, F.; de la Cruz, P.; de la Hoz, A.; Díaz-Ortiz, A.; Díez-Barra, E. Contemp. Org. Synth. 1997, 4, 373. Also see Schmink, J.R.; Leadbeater, N.E. Org. Biomol. Chem., 2009, 7, 3842.

119. See Kuhnert, N. Angew. Chem. Int. Ed. 2002, 41, 1863.

120. Laurent, R.; Laporterie, A.; Dubac, J.; Berlan, J.; Lefeuvre, S.; Audhuy, M. J. Org. Chem. 1992, 57, 7099 and references therein.

121. Raner, K.D.; Strauss, C.R.; Vyskoc, F.; Mokbel, L. J. Org. Chem. 1993, 58, 950, and references cited therein.

122. Cravotto, G.; Cintas, P. Chemistry: European J. 2007, 13, 1902.

123. See Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res. 2002, 35, 717; Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6, 128; Roberts, B.A.; Strauss, C.R. Acc. Chem. Res. 2005, 38, 653; Kuznetsov, D.V.; Raev, V.A.; Kuranov, G.L.; Arapov, O.V.; Kostikov, R.R. Russ. J. Org. Chem. 2005, 41, 1719. For a discussion of microwave-assisted organic synthesis in near critical water, see Kremsner, J.M.; Kappe, C.O. Eur. J. Org. Chem. 2005, 3672.

124. Mossé, S.; Alexakis, A. Org. Lett. 2006, 8, 3577.

125. Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res. 2002, 35, 717; Olofsson, K.; Larhed, M. in Lidström, P.; Tierney, J.P. Microwave-Assisted Organic Synthesis, Blackwell, Oxford, 2004, Chap. 2., Andappan, M.M.S.; Nilsson, P.; Larhed, M. Mol. Diversity 2003, 7, 97.

126. Nuteberg, D.; Schaal, W.; Hamelink, E.; Vrang, L.; Larhed, M. J. Comb. Chem. 2003, 5, 456; Miller, S.P.; Morgan, J.B.; Nepveux, F.J.; Morken, J.P. Org. Lett. 2004, 6, 131; Kaval, N.; Bisztray, K.; Dehaen, W.; Kappe, C.O.; Van der Eycken, E. Mol. Diversity 2003, 7, 125; Gong, Y.; He, W. Heterocycles 2004, 62, 851; Leadbeater, N.E.; Marco, M. J. Org. Chem. 2003, 68, 888; Bai, L.; Wang, J.-X.; Zhang, Y. Green Chem. 2003, 5, 615; Leadbeater, N.E.; Marco, M. J. Org. Chem. 2003, 68, 5660.

127. Kaval, N.; Bisztray, K.; Dehaen, W.; Kappe, C.O.; Van der Eycken, E. Mol. Diversity 2003, 7, 125; Gong, Y.; He, W. Heterocycles 2004, 62, 851; Leadbeater, N.E.; Marco, M.; Tominack, B.J. Org. Lett. 2003, 5, 3919; Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Eur. J. Org. Chem. 2003, 4713.

128. Wu, Y.-J.; He, H.; L'Heureux, A. Tetrahedron Lett. 2003, 44, 4217; Lange, J.H.M.; Hofmeyer, L.J.F.; Hout, F.A.S.; Osnabrug, S.J.M.; Verveer, P.C.; Kruse, C.G.; Feenstra, R.W. Tetrahedron Lett. 2002, 43, 1101.

129. See Van der Eycken, E.; Appukkuttan, P.; De Borggraeve, W.; Dehaen, W.; Dallinger, D.; Kappe, C.O. J. Org. Chem. 2002, 67, 7904; Pinto, D.C.G.A.; Silva, A.M.S.; Almeida, L.M.P.M.; Carrillo, J.R.; D'az-Ortiz, A.; de la Hoz, A.; Cavaleiro, J.A.S. Synlett 2003, 1415.

130. Dupau, P.; Epple, R.; Thomas, A.A.; Fokin, V.V.; Sharpless, K.B. Adv. Synth. Catal. 2002, 344, 421.

131. Raheem, I.T.; Goodman, S.N.; Jacobsen, E.N. J. Am. Chem. Soc. 2004, 126, 706.