SAT SUBJECT TEST MATH LEVEL 2

PART 2

REVIEW OF MAJOR TOPICS

CHAPTER 1
Functions

 
1.2 Polynomial Functions

INEQUALITIES

Given any algebraic expression f(x), there are exactly three situations that can exist:

     1. for some values of xf(x) < 0;

     2. for some values of xf(x) = 0;

     3. for some values of xf(x) > 0.

If all three of these sets of numbers are indicated on a number line, the set of values that satisfy f(x) < 0 is always separated from the set of values that satisfy f(x) > 0 by the values of that satisfy f(x) = 0.

EXAMPLE

Find the set of values for that satisfies x– 3– 4 < 0.

Graph x– 3– 4. You need to find the values of points on the graph that lie below the x-axis. First find the zeros: = 4, = –1. The points that lie below the x-axis are (strictly) between –1 and 4, or –1 < < 4.

EXERCISES

1.       Which of the following is equivalent to 3x– < 2?

           (A)  

           (B)  

           (C)  

           (D)  

           (E)  

2.       Solve x5 – 3x+ 2x– 3 > 0.

           (A)  

           (B)  (–1.90,–0.87)

           (C)  

           (D)  (–0.87,1.58)

           (E)  

3.       The number of integers that satisfy the inequality x+ 48 < 16is

           (A)  0

           (B)  4

           (C)  7

           (D)  an infinite number

           (E)  none of the above