Introductory Chemistry: A Foundation - Zumdahl S.S., DeCoste D.J. 2019

Reactions in Aqueous Solutions
Predicting Whether a Reaction Will Occur


David Taylor/Science Source

A yellow precipitate of lead(II) iodide is formed by the reaction of lead(II) nitrate solution and potassium iodide solution.

The chemical reactions that are most important to us occur in water—in aqueous solutions. Virtually all of the chemical reactions that keep each of us alive and well take place in the aqueous medium present in our bodies. For example, the oxygen you breathe dissolves in your blood, where it associates with the hemoglobin in the red blood cells. While attached to the hemoglobin it is transported to your cells, where it reacts with fuel (from the food you eat) to provide energy for living. However, the reaction between oxygen and fuel is not direct—the cells are not tiny furnaces. Instead, electrons are transferred from the fuel to a series of molecules that pass them along (this is called the respiratory chain) until they eventually reach oxygen. Many other reactions are also crucial to our health and well-being. You will see numerous examples of these as you continue your study of chemistry.

In this chapter we will study some common types of reactions that take place in water, and we will become familiar with some of the driving forces that make these reactions occur. We will also learn how to predict the products for these reactions and how to write various equations to describe them.


Corbis/Getty Images

A burning match involves several chemical reactions.

Predicting Whether a Reaction Will Occur


· To learn about some of the factors that cause reactions to occur.

In this text we have already seen many chemical reactions. Now let’s consider an important question: Why does a chemical reaction occur? What causes reactants to “want” to form products? As chemists have studied reactions, they have recognized several “tendencies” in reactants that drive them to form products. That is, there are several “driving forces” that pull reactants toward products—changes that tend to make reactions go in the direction of the arrow. The most common of these driving forces are

1. Formation of a solid

2. Formation of water

3. Transfer of electrons

4. Formation of a gas

When two or more chemicals are brought together, if any of these things can occur, a chemical change (a reaction) is likely to take place. Accordingly, when we are confronted with a set of reactants and want to predict whether a reaction will occur and what products might form, we will consider these driving forces. They will help us organize our thoughts as we encounter new reactions.