Other Materials - Microreactors Made of Glass and Silicon - Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

3. Microreactors Made of Glass and Silicon

3.7. Other Materials

Microreactors are sometimes made of ceramics besides being made of glass and/or silicon. In its unfired state, the ceramic material is “green,” meaning that the components, ceramic material, Al2O3, and glass, are made up into a film using a polymer binder. In the course of firing, the binder burns off and the green material sinters together. The reactor is constructed from individual layers as described above. The layer is structured in its green state – by stamping, imprint, or laser cutting. The layers are bonded together by a combined pressing and firing process. LTC-type ceramic material is advantageous, as it will sinter at 900 °C due to its high glass content. Use of ceramic material permits the additional inclusion of electronic components, which is known as hybrid assembly.


1. Hülsenberg, D., Harnisch, A., and Bismarck, A. (2008) Microstructuring of Glasses, 87, Springer.

2. Heuberger, A. (1989) Mikromechanik: Mikrofertigung mit Methoden der Halbleitertechnologie, Springer.

3. (2010) Introductory MEMS, Springer.

4. Nguyen, N.T. and Wereley, S.T. (2002) Fundamentals and Applications of Microfluidics, Artech House.

5. Cyrille, H., Willy, D., and Philippe, F. (2012) Deep Anisotropic Etching of Silicon Using Low Pressure High Density Plasma. Presentation of Complementary Techniques and their Applications in Microtechnology. [Online]. Available: http://scholar.google.de/scholar?q=Cyrille+Hibert+icp&btnG=&hl=de&as_sdt=0 (accessed 21-July 2012).

6. Gerlach, G. and Dötzel, W. (2006) Einführung in die Mikrosystemtechnik: Ein Kursbuch für Studierende, Hanser Verlag.

7. Elwenspoek, M. and Jansen, H.V. (2004) Silicon Micromachining, Cambridge University Press.

8. Frühauf, J. (2004) Shape and Functional Elements of the Bulk Silicon Microtechnique: A Manual of Wet-Etched Silicon Structures, Springer.

9. Pal, P., Sato, K., Shikida, M., and Gosálvez, M.A. (2009) Study of corner compensating structures and fabrication of various shapes of MEMS structures in pure and surfactant added TMAH. Sens. Actuators A: Phys., 154 (2), 192–203.

10. Rai-Choudhury, P. (2000) Mems and Moems Technology and Applications, SPIE Press.

11. Lindroos, V., Tilli, M., Lehto, A., and Motooka, T. (2010) Handbook of Silicon Based MEMs Materials and Technologies, Elsevier.

12. Bu, M., Melvin, T., Ensell, G.J., Wilkinson, J.S., and Evans, A.G.R. (2004) A new masking technology for deep glass etching and its microfluidic application. Sens. Actuators A: Phys., 115 (2), 476–482.

13. Dietrich, T.R., Freitag, A., and Scholz, R. (2004) Herstellung und Eigenschaften von Mikroreaktoren aus Glas. Chem. Ing. Tech., 76 (5), 575–580.

14. Harnisch, A. and Hülsenberg, D. (2000) Microstructurable glasses and technologies. Funct. Mater., 415–420.

15. Mrotzek, S., Harnisch, A., Hungenbach, G., Strahl, H., and Hülsenberg, D. (2003) Processing techniques for photostructurable glasses. Glass Sci. Technol., 76 (1), 22–27.

16. Dietrich, T.R., Freitag, A., and Scholz, R. (2005) Production and characteristics of microreactors made from glass. Chem. Eng. Technol., 28 (4), 477–483.

17. Albrecht, A., Frank, T., and Harnisch, A. (1998) “Glass relief structuring system using fine linear scanner to irradiate photo-structurable glass”, German Patent DE1984675112.

18. Slikkerveer, P.J., Bouten, P.C.P., and De Haas, F.C.M. (2000) High quality mechanical etching of brittle materials by powder blasting. Sens. Actuators A: Phys., 85 (1–3), 296–303.

19. Yun, D.J., Seo, T.I., and Park, D.S. (2008) Fabrication of biochips with micro fluidic channels by micro end-milling and powder blasting. Sensors, 8 (2), 1308–1320.

20. Wensink, H., Berenschot, J.W., Jansen, H.V., and Elwenspoek, M.C. (2000) High resolution powder blast micromachining. Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, pp. 769–774.

21. Belloy, E., Thurre, S., Walckiers, E., Sayah, A., and Gijs, M.A. (2000) The introduction of powder blasting for sensor and microsystem applications. Sens. Actuators A: Phys., 84 (3), 330–337.

22. Schlautmann, S., Wensink, H., Schasfoort, R., Elwenspoek, M., and Berg, A. (2001) Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors. J. Micromech. Microeng., 11, 386.

23. Solignac, D., Sayah, A., Constantin, S., Freitag, R., and Gijs, M.A.M. (2001) Powder blasting for the realisation of microchips for bio-analytic applications. Sens. Actuators A: Phys., 92 (1), 388–393.

24. Yagyu, H., Sugano, K., Hayashi, S., and Tabata, O. (2005) Micropowder blasting with nanoparticles dispersed polymer mask for rapid prototyping of glass chip. J. Micromech. Microeng., 15, 1236.

25. Nguyen, N. (1997) Micromachined flow sensors—a review. Flow Meas. Instrum., 8 (1), 7–16.

26. Haneveld, J., Lammerink, T.S.J., Dijkstra, M., Droogendijk, H., de Boer, M.J., and Wiegerink, R.J. (2008) Highly sensitive micro coriolis mass flow sensor. IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008. MEMS 2008, pp. 920–923.

27. Doerner, S., Schneider, T., Lindow, H., Eichelbaum, F., Auge, J., and Hauptmann, P. (2004) Inline-Impedanzspektroskopie für flüssige Medien. Chem. Ing. Tech., 76 (9), 1336–1337.

28. Doerner, S., Schneider, T., Schroder, J., and Hauptmann, P. (2003) Universal impedance spectrum analyzer for sensor applications. Sensors, 2003. Proceedings of IEEE, Bd. 1, pp. 596–599.

29. Kutzner, C., Jacobs, T., Tobehn, I., Steinke, A., and Hauptmann, P. (2009) Impedimetrischer Sensor zur inline Analyse - Google Scholar. 9. Dresdner Sensor-Symposium, 12-2009.

30. Jacobs, T., Kutzner, C., Kropp, M., Brokmann, G., Lang, W., Steinke, A., Kienle, A., and Hauptmann, P. (2009) Novel impedimetric and perforated thermal flow sensor for inline chemical process analysis in micro residence time reactors. Sensors, 2009 IEEE, pp. 719–722.

31. Thomas, F., Geert, B., Steffen, H., and Arnd, S. (2011) “Multisensormodul für die Mikroverfahrenstechnik – Conference papers – VDE Publishing House”, Darmstadt, Deutschland.

32. Täschner, R. and Hiller, E. (2011) Aktivierungsverfahren für das Niedertemperatur-Silizium-Direkt-Bonden. MikroSystemTechnik,

33. Resnik, D., Vrtacnik, D., Aljancic, U., and Amon, S. (2000) Study of low-temperature direct bonding of (111) and (100) silicon wafers under various ambient and surface conditions. Sens. Actuators A: Phys., 80 (1), 68–76.

34. Tong, Q.Y., Cha, G., Gafiteanu, R., and Gosele, U. (1994) Low temperature wafer direct bonding. J. Microelectromech. Syst., 3 (1), 29–35.

35. Wurziger, H. and Schwesinger, N. Anschlußkupplung für plättchenförmige Mikrokomponenten. German Patent DE19860220A1.

36. Körsten, S. “Entwicklung von mikroreaktionstechnischen Modulen für die Anwendung im chemischen Labor @ DB Thüringen”. [Online]. Available: http://www.db-thueringen.de/servlets/DocumentServlet?id=14986 (accessed: 29.01.2013).

37. Gross, G.A., Günther, P.M., Schneider, S., and Köhler, J.M. (2009) Microreaction platform for educational experiments, flexible synthesis and device characterization. MikroSystemTechnik.