Conclusion and Outlook - Lesson 2 - Homogeneous Reactions II: Photochemistry and Electrochemistry and Radiopharmaceutical Synthesis - Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

6. Homogeneous Reactions II: Photochemistry and Electrochemistry and Radiopharmaceutical Synthesis

6.4. Conclusion and Outlook

It is well established that microreactors and continuous flow synthesis enable reactions to be performed more rapidly, efficiently, and selectively than batch reactions. In addition to traditional solution phase synthesis, microreactor technology has now been demonstrated to efficiently enable photochemistry and electrochemistry to be more easily introduced into the methodology available to the synthetic chemist. As illustrated within this chapter, it is also possible to conduct PET radiosynthesis within these systems where a key advantage is that the processing time can be substantially reduced.

References

1. Lu, H., Schmidt, M.A., and Jensen, K.F. (2001) Lab Chip, 1, 22–28.

2. Hook, B.A., Dohle, W., Hirst, P.R., Pickworth, M., Berry, M.B., and Booker-Milburn, K.I. (2005) J. Org. Chem., 70, 7558–7564.

3. Sakeda, K., Wakabayashi, K., Matsushita, Y., Ichimura, T., Suzuki, T., Wada, T., and Inuoe, Y. (2007) J. Photochem. Photobiol. A, 192, 166–171.

4. Maeda, H., Mukae, H., and Mizuno, K. (2005) Chem. Lett. (Jpn.), 34, 66–67.

5. Ueno, K., Kitagawa, F., and Kitamura, N. (2002) Lab Chip, 2, 231.

6. Ehrich, H., Linke, D., Morgenschweis, K., Baerns, M., and Jahnisch, K. (2002) Chimia, 56, 647.

7. Belluau, V., Noeureuil, P., Ratzke, E., Skvortsov, A., Gallagher, S., Motti, CA., and Oelgemöller, M. (2010) Tetrahedron Lett., 51, 4738–4741.

8. Takei, G., Kitamori, T., and Kim, H.B. (2005) Catal. Commun., 6, 357–360.

9. Fukuyama, T., Hino, Y., Kamata, N., and Ryu, I. (2004) Chem. Lett., 33, 1430–1431.

10. Fukuyama, T., Kajihara, Y., Hino, Y., and Ryu, I. (2011) J. Flow Chem., 1, 40–45.

11. Matsubara, H., Hino, Y., and Ryu, I. (2010) Proceedings of the 11th International Conference on Microreaction Technology, Kyoto, Japan, pp. 44–45.

12. Gutierrez, A.C. and Jamison, T.F. (2011) J. Flow Chem., 1, 24–27.

13. Freitag, A., Dietrich, T.R., and Scholz, R. (2010) Proceedings of the 11th International Conference on Microreaction Technology, Kyoto, Japan, pp. 25–26.

14. Matsushita, Y., Kumad, S., Wakabayashi, K., Sakeda, K., and Ichimura, K. (2006) Chem. Lett., 35, 410–411.

15. Matsushita, Y., Iwasawa, M., Suzuki, T., and Ichimura, T. (2009) Chem. Lett., 38, 846–847.

16. Matsushita, Y., Ohba, N., Suzuki, T., and Ichimura, T. (2008) Catal. Today, 132, 153–158.

17. Lowe, H. and Ehrfeld, W. (1999) Electrochim. Acta, 44, 3679–3689.

18. Ueno, K., Kim, H., and Kitamura, N. (2003) Anal. Chem., 75, 2086–2091.

19. Tsujimoto, M., Tonomura, O., Kano, M., Hasebe, S., and Hinouchi, T. (2010) Proceedings of the 11th International Conference on Microreaction Technology, Kyoto, Japan, pp. 320–321.

20. Suga, S., Okajima, M., Fjiwara, K., and Joshida, J. (2001) J. Am. Chem. Soc., 123, 7941–7942.

21. Nagaki, A., Togai, M., Suga, S., Aoki, N., Mae, K., and Yoshida, Y. (2005) J. Am. Chem. Soc., 127, 11666–11675.

22. Horii, D., Atobe, M., Fuchigama, T., and Marken, F. (2005) Electrochem. Commun., 7, 35–39.

23. Paddon, C.A., Pritchard, G.J., Thiemann, T., and Marken, F. (2002) Electrochem. Commun., 4, 825–831.

24. Horcajada, R., Okajima, M., Suga, S., and Yoshida, Y. (2005) Chem. Commun., 1303–1305.

25. He, P., Watts, P., Marken, F., and Haswell, S.J. (2005) Electrochem. Commun., 7, 918–924.

26. He, P., Watts, P., Marken, F., and Haswell, S.J. (2006) Angew. Chem., Int. Ed., 45, 4146–4149.

27. Watts, K., Gattrell, W., and Wirth, T. (2011) Beilstein J. Org. Chem., 7, 1108–1114.

28. Amemiya, F., Fuse, K., Fuchigami, T., and Atobe, M. (2010) Chem. Commun., 46, 2730–2732.

29. Kashiwagi, T., Amemiya, F., Fuchigami, T., and Atobe, M. (2012) Chem. Commun., 48, 2806–2808.

30. Hill-Cousins, J.T., Kuleshova, J., Green, R.A., Birkin, P.R., Pletcher, D., Underwood, T.J., Leach, S.G., and Brown, R.C.D. (2012) ChemSusChem, 5, 326–331.

31. Kuleshova, J., Hill-Cousins, J.T., Birkin, P.R., Brown, R.C.D., Pletcher, D., and Underwood, T.J. (2012) Electrochim. Acta, 69, 197–202.

32. Phelps, M. (2000) Proc. Natl. Acad. Sci. USA, 97, 9226–9233.

33. Nutt, R. (2002) Mol. Imaging Biol., 4, 11–26.

34. Elizarov, A.M. (2009) Lab Chip, 9, 1326–1333.

35. Wiles, C. and Watts, P. (2011) Chem. Commun., 47, 6512–6535.

36. Wiles, C. and Watts, P. (2009) Future Med. Chem., 1, 1593–1612.

37. Mason, B.P., Price, K.E., Steinbacher, J.L., Bogdan, A.R., and McQuade, D.T. (2007) Chem. Rev., 107, 2300–2318.

38. Nguyen, N.-T. and Wu, Z. (2005) J. Micromech. Microeng., 15, R1–R16.

39. Hessel, V., Lowe, H., and Schonfeld, F. (2005) Chem. Eng. Sci., 60, 2479–2501.

40. Razzaq, T. and Kappe, C.O. (2010) Chem. Asian J., 5, 1274–1289.

41. Van Den Broek, S.A.M.W., Nieuwland, P.J., Koch, K., Laverman, P., Brocken, L., Boerman, O.C., and Rutjes, F.P.J.T. (2011) J. Labelled Compd. Radiopharm., 54, S530.

42. Gustafsson, T., Gilmour, R., and Seeberger, P.H. (2008) Chem. Commun., 3022–3024.

43. Chambers, R.D. and Spink, R.C.H. (1999) Chem. Commun., 883–884.

44. Chambers, R.D., Holling, D., Spink, R.C.H., and Sandford, G. (2001) Lab Chip, 1, 132–137.

45. de Mas, N., Guenther, A., Schmidt, M.A., and Jensen, K.F. (2003) Ind. Eng. Chem. Res., 42, 698–707.

46. Lu, S., Watts, P., Chin, F.T., Hong, J., Musachio, J.L., Briard, E., and Pike, V.W. (2004) Lab Chip, 4, 523–525.

47. Steel, C.J., O'Brien, A.T., Luthra, S.K., and Brady, F. (2007) J. Labelled Compd. Radiopharm., 50, 308–311.

48. Gillies, J.M., Prenant, C., Chimon, G.N., Smethurst, G.J., Perrie, W., Hamblett, I., Dekker, B.A., and Zweit, J. (2006) Appl. Radiat. Isot., 64, 325–332.

49. Gillies, J.M., Prenant, C., Chimon, G.N., Smethurst, G.J., Perrie, W., Dekker, B.A., and Zweit, J. (2006) Appl. Radiat. Isot., 64, 333–338.

50. Wester, H.J., Schoultz, B.W., Hultsch, C., and Henriksen, G. (2009) Eur. J. Nucl. Med. Mol. Imaging, 36, 653–658.

51. Cheng-Lee, C., Sui, G., Elizarov, A., Shu, C.J., Shin, Y.S., Dooley, A.N., Huang, J., Daridon, A., Wyatt, P., Stout, D., Kolb, H.C., Witte, O.N., Satyamurthy, N., Heath, J.R., Phelps, M.E., Quake, S.R., and Tseng, H.R. (2005) Science, 310, 1793–1796.

52. Lu, S. and Pike, V.W. (2010) J. Fluorine Chem., 131, 1032–1038.

53. Chun, J.-H., Lu, S., Lee, Y.-S., and Pike, V.W. (2010) J. Org. Chem., 75, 3332–3338.

54. Lu, S., Giamis, A.M., and Pike, V.W. (2009) Curr. Radiopharm., 2, 49–55.

55. Jivan, S., Ruth, T.J., Matteo, J.C., and O'Neil, J.P. (2007) J. Labelled Compd. Radiopharm., 50, S171.

56. Zeng, W., Giamis, A.M., Matteo, J.C., Townsend, D., and Yu, M. (2007) J. Labelled Compd. Radiopharm., 50, S182.

57. Giamis, A.M., Price, R., and Matteo, J.C. (2008) J. Nucl. Med., 49, 46P.

58. Pascali, G., Nannavecchia, G., Pitzianti, S., and Salvadori, P.A. (2011) Nucl. Med. Bio., 38, 637–644.

59. Cleij, M.C., Clark, J.C., Baron, J.-C., and Aigbirhio, F.I. (2007) J. Labelled Compd. Radiopharm., 50, 19–24.

60. Miller, P.W., Long, N.J., de Mello, A.J., Vilar, R., Audrain, H., Bender, D., Passchier, J., and Gee, A. (2007) Angew. Chem., Int. Ed., 46, 2875–2878.

61. Kealey, S., Plisson, C., Collier, T.L., Long, N.J., Husbands, S.M., Martarello, L., and Gee, A.D. (2011) Org. Biomol. Chem., 9, 3313–3319.