Conclusions and Outlook - Lesson 4 - Gas–Liquid Reactions - Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

9. Gas–Liquid Reactions

9.7. Conclusions and Outlook

Two classes of gas–liquid microchannel reactors were developed in the past years – continuous-phase contacting falling film, overlapping channel, mesh, and annular flow approaches, and dispersed-phase contacting by Taylor flow reactors, micromixers for bubble and foam formation, and miniaturized packed bed microreactors, which follow classical trickle-bed operation at smaller scale. Recently integration of operations inside a microdevice has been studied and led to the development of membrane microreactors.

Gas–liquid–solid processes are possible by using either wall-coated catalyst or mini-packed beds. Numerous applications have demonstrated process intensification in terms of selectivity, space-time yield, and safety by use of gas–liquid microreactors, including fluorinations, chlorination, hydrogenations, sulfonations, photooxidations, and so on. This is achieved by enhanced mass transfer via the interface and through formation of thin liquid layers, which also give better transfer and allow conducting photochemical reactions more efficiently. Operation is now possible in new process windows with very aggressive reactants such as elemental fluorine or even under explosive conditions.

The transfer of laboratory process development to pilot-scale is not as much practiced so far as compared to the liquid-phase fine-chemical reactions carried out by microprocess technology. This is largely because of open issues on fluid distribution and the fact that throughputs are often not that large as given for liquid-phase devices, for example, stemming from the need to make thin films in the falling film microreactor. However, there are several commercialized gas–liquid microprocesses, showing that laboratory investigations are completed and new reactor technology is available. Pilot scale falling-film, packed bed, and tube in tube microreactors have been developed recently, which further extend the technological offer for future use.

One example for pilot-scale operation has been already given for the fluorination and the direct synthesis of hydrogen peroxide is on a similar way.

This update, compared to the previous issue, includes more relevant gas–liquid reactions performed in microdevices. This proves the acceptance of the technology and growing research interest in this field. On the other hand, few new microreactor concepts have been developed last five years. This is in agreement with the general attitude that microreactors are well-developed technology and that attention should be redirected to their scaling up and applications.

Acknowledgement

This work is funded by the EU project POLYCATunder grant agreement No. CP-IP 246095-2 of the European Community's Seventh Framework Program and by the ERC Advanced Grant “Novel Process Windows” of Prof. Dr. Volker Hessel at Eindhoven University of Technology (TU/e) in the Netherlands.

References

1. Mills, P.L., Ramachandran, P.A., and Chaudhari, R.V. (1992) Rev. Chem. Eng., 8, 5.

2. Lee, S.-Y. and Tsui, Y.P. (1999) Chem. Eng. Progress, 95(7) 23–49.

3. Hessel, V., Löwe, H., Müller, A., and Kolb, G. (2005) Chemical Micro Process Engineering – Processing and Plants, Wiley-VCH Verlag GmbH, Weinheim.

4. Hessel, V., Hardt, S., and Löwe, H. (2004) Chemical Micro Process Engineering – Fundamentals, Modeling and Reactions, Wiley-VCH Verlag GmbH, Weinheim.

5. Kockmann, N. (ed.) (2006) Micro Process Engineering – Fundamentals, Devices, Fabrication, and Applications, Advanced Micro and Nanosystems (eds O.von Brand, G.K. Fedder, C. Hierold, J.G. Korvink, and O. Tabata), Wiley-VCH Verlag GmbH, Weinheim.

6. Klemm, F.E., Rudek, M., Markowz, G., and Schütte, R. (2004) Mikroverfahrenstechnik, in Chemische Technik: Prozesse und Produkte, Neue Technologien, vol. 2 (ed. Küchle Winnacker), p. 759. Wiley-VCH Verlag GmbH, Weinheim.

7. Fletcher, P.D.I., Haswell, S.J., Pombo-Villar, E., Warrington, B.H., Watts, P., Wong, S.Y.F., and Zhang, X. (2002) Tetrahedron, 58, 4735.

8. Kiwi-Minsker, L. and Renken, A. (2005) Catal. Today, 110, 2.

9. Pennemann, H., Watts, P., Haswell, S., Hessel, V., and Löwe, H. (2004) Org. Process Res. Dev., 8, 422.

10. Jähnisch, K., Hessel, V., Löwe, H., and Baerns, M. (2004) Angew. Chem., Int. Ed., 43, 406.

11. Kolb, G. and Hessel, V. (2004) Chem. Eng. J., 98, 1.

12. Gavriilidis, A., Angeli, P., Cao, E., Yeong, K.K., and Wan, Y.S.S. (2002) Trans. Inst. Chem. Eng., 80, 3.

13. Jensen, K.F. (1999) AIChE J., 45, 2051.

14. Jensen, K.F. (1998) Nature, 393, 735.

15. Ehrfeld, W., Hessel, V., and Haverkamp, V. (1999) Ullmann's Encyclopedia of Industrial Chemistry, 6th edn, Wiley-VCH Verlag GmbH, Weinheim, pp. 1.

16. Hogan, J. (2006) Nature, 442, 351.

17. Thayer, A. (2005) Chem. Eng. News, 83, 43.

18. Seeberger, P. (2005) Chem. Files, 5, 2.

19. Geyer, K., Codee, J.D.C., and Seeberger, P.H (2006) Chem. Eur. J., 12, 8434.

20. Watts, P. (2005) QSAR Comb. Sci., 24, 701.

21. Wiles, C., Watts, P., and Haswell, S.J. (2005) Tetrahedron, 61, 5209–5217.

22. Hessel, V., Renken, A., Schouten, J.C., and Yoshida, J. (eds) (2009) Micro Process Engineering, Volume 3: SYSTEM, Process and Plant Engineering, Wiley-VCH Verlag GmbH, Weinheim.

23. Hessel, V., Renken, A., Schouten, J.C., and Yoshida, J. (eds) (2009) Micro Process Engineering: A Comprehensive Handbook, Wiley-VCH Verlag GmbH, Weinheim.

24. Dietrich, T. (2009) Microchemical Engineering in Practise, Wiley-VCH Verlag GmbH, Weinheim.

25. Wiles, C. and Wirth, T. (2011) Micro Reaction Technology in Organic Synthesis, CRC Press, Boca Raton, FL.

26. Hessel, V., Angeli, P., Gavriilidis, A., and Löwe, H. (2005) Ind. Eng. Chem. Res., 44, 9750.

27. Günther, A. and Jensen, K.F. (2006) Lab Chip, 6, 1487.

28. TeGrotenhuis, W., Stenkamp, S., and Twitchell, A. (2005) Microreactor Technology and Process Intensification (eds Y. Wang and J.D. Holladay), American Chemical Society, Washington, DC, pp. 360.

29. Bretherton, F.P. (1961) J. Fluid Mech., 10, 166.

30. Chen, W.L., Twu, M.C., and Pan, C. (2002) Int. J. Multiphase Flow, 28, 1235.

31. Coleman, J.W. and Garimella, S. (1999) Int. J. Heat Mass Trans., 42, 2869.

32. Fukano, T. and Kariyasaki, A. (1993) Nucl. Eng. Des., 141, 59.

33. Hsieh, C.C., Wang, S.B., and Pan, C. (1997) Int. J. Multiphase Flow, 23, 1147.

34. Mishima, K. and Hibiki, T. (1996) Int. J. Multiphase Flow, 22, 703.

35. Peng, X.F. and Wang, B.X. (1993) Int. J. Heat Mass Trans., 36, 3421.

36. Thulasidas, T.C., Abraham, M.A., and Cerro, R.L. (1995) Chem. Eng. Sci, 50, 183.

37. Thulasidas, T.C., Abraham, M.A., and Cerro, R.L. (1997) Chem. Eng. Sci, 52, 2947.

38. Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., and Sadowski, D.L. (1999) Int. J. Multiphase Flow, 25, 377.

39. Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., LeMouel, A., and McCord, B.N. (1999) Int. J. Multiphase Flow, 25, 395.

40. Xu, J.L., Cheng, P., and Zhao, T.S. (1999) Int. J. Multiphase Flow, 25, 411.

41. Wille, C. (2002) Entwicklung und Charakterisierung eines Mikrofallfilm-Reaktors für stofftransportlimitierte hochexotherme Gas/Flüssig-Reaktionen. PhD thesis; University Clausthal-Zellerfeld; Fakultät für Bergbau, Hüttenwesen und Maschinenbau.

42. Ehrich, H., Linke, D., Morgenschweis, K., Baerns, M., and Jähnisch, K. (2002) Chimia, 56, 647.

43. Moschou, P., de Croon, M.H.J.M., van der Schaaf, J., and Schouten, J.C. (2012) Chem. Eng. Sci., 76, 216–223.

44. Vankayala, B.K., Löb, P., Hessel, V., Menges, G., Hofmann, C., Metzke, D., Kost, H.-J., and Krtschil, U. (2007) 1st International Congress on Green Process Engineering, Toulouse, France.

45. Ziegenbalg, D., Löb, P., Al-Rawashdeh, M., Kralisch, D., Schouten, J.C., Hessel, V., and Schönfeld, F. (2010) Chem. Eng. Sci., 65, 3557–3566.

46. Rebrov, E.V., Duisters, T., Löb, P., Meuldijk, J., and Hessel, V. Ind. Eng. Chem. Res., 51(26), 8719–8725.

47. de Bellefon, C., Lamouille, T., Pennemann, H., and Hessel, V. (2005) Catal. Today, 110, 179.

48. Zhang, H., Chen, G., Yue, J., and Yuan, Q. (2009) AIChE J., 55 (5), 1110–1120.

49. Al-Rawashdeh, M., Hessel, V., Löb, P., Mevissen, K., and Schönfeld, F. (2008) Chem. Eng. Sci., 63 (21), 5149–5159.

50. Monnier, H., Falk, L., Lapicque, F., Hadjoudj, R., and Roizard, C. (2010) Chem. Eng. Sci., 65 (24), 6425–6434.

51. Klemm, E., Mathivanan, G., Schwarz, T., and Schirrmeister, S. (2011) Chem. Eng. Process.: Process Intensification, 50 (10), 1010–1016.

52. Kane, A., Monnier, H., Tondeur, D., and Falk, L. (2011) Chem. Eng. J., 167 (2–3), 1, 455–467.

53. Shaw, J., Turner, C., Miller, B., and Harper, M. (1998) Reaction and transport coupling for liquid and liquid/gas microreactor systems, in Process Miniaturization: 2nd International Conference on Microreaction Technology, IMRET 2; Topical Conf. Preprints (eds W. Ehrfeld, I.H. Rinard, and R.S. Wegeng), AIChE, New Orleans, USA, pp. 176–180.

54. Bibby, I.P., Harper, M.J., and Shaw, J. (1998) Design and optimisation of micro-fluidic reactors through CFD and analytical modelling. Proc. 2nd Int. Conf. Microreaction Technology, IMRET-2, New Orleans.

55. Robins, I., Shaw, J., Miller, B., Turner, C., and Harper, M. (1997) Solute transfer by liquid/liquid exchange without mixing in micro-contactor devices, in Microreaction Technology – Proc. of the 1st International Conference on Microreaction Technology; IMRET 1 (ed. W. Ehrfeld), Springer, Berlin, pp. 35–46.

56. Kuiper, S., van Rijn, C.J.M., Nijdam, W., and Elwenspoek, M.C. (1998) J. Membr. Sci., 150, 1–8.

57. Madou, M. (1997) Fundamentals of Microfabrication, CRC Press, Boca Raton, FL.

58. Wenn, D.A., Shaw, J.E.A., and Mackenzie, B. (2003) Lab Chip, 3, 180.

59. Abdallah, R., Meille, V., Shaw, J., Wenn, D., and de Bellefon, C. (2004) Chem. Commun., 372.

60. Sun, X., Constantinou, A., and Gavriilidis, A. (2011) Chem. Eng. Process.: Process Intensification, 50 (10), 991–997.

61. Kulkarni, A.A., Gorasia, A.K., and Ranade, V.V. (2007) Chem. Eng. Sci., 62 (24), 7484–7493.

62. Amador, C., Wenn, D., Shaw, J., Gavriilidis, A., and Angeli, P. (2008) Chem. Eng. J., 135 (Suppl. 1), S259–S269.

63. Chambers, R.D. and Spink, R.C.H. (1999) Chem. Commun., 10, 883.

64. Chambers, R.D., Holling, D., Spink, R.C.H., and Sandford, G. (2001) Lab Chip, 1, 132.

65. de Mas, N., Günther, A., Schmidt, M.A., and Jensen, K.F. (2003) Ind. Eng. Chem. Res., 42, 698.

66. Haverkamp, V. (2002) Charakterisierung einer Mikroblasensäule zur Durchführung stofftransportlimitierter und/oder hochexothermer Gas/Flüssig-Reaktionen (in Fortschritt-Bericht VDI, Reihe 3, Nr. 771). PhD thesis; University Erlangen.

67. Haverkamp, V., Emig, G., Hessel, V., Liauw, M.A., and Löwe, H. (2001) Characterization of a gas/liquid microreactor, the micro bubble column: determination of specific interfacial area, in Microreaction Technology – IMRET 5: Proc. of the 5th International Conference on Microreaction Technology (eds M. Matlosz, W. Ehrfeld, and J.P. Baselt), Springer, Berlin, pp. 202–214.

68. Losey, M.W., Schmidt, M.A., and Jensen, K.F. (2001) Ind. Chem. Res., 40, 2555.

69. Losey, M.W., Jackman, R.J., Firebaugh, S.L., Schmidt, M.A., and Jensen, K.F. (2002) J. Microelectromech. Syst., 11, 709.

70. Al-Rawashdeh, M., Fluitsma, L.J.M., Nijhuis, T.A., Rebrov, E.V., Hessel, V., and Schouten, J.C. (2012) Chem. Eng. J.,181–182, 549–556.

71. Haverkamp, V., Hessel, V., Löwe, H., Menges, G., Warnier, M.J.F., Rebrov, E.V., de Croon, M.H.J.M., Schouten, J.C., and Liauw, M.A. (2006) Chem. Eng. Technol., 29, 1015.

72. Wang, X., Yong, Y., Fan, P., Yu, G., Yang, C., and Mao, Z. (2012) Chem. Eng. Sci., 69, 578–586.

73. Wootton, R.C.R., Fortt, R., and de Mello, A.J. (2002) Org. Proc. Res. Dev., 60, 187.

74. Hessel, V., Ehrfeld, W., Golbig, K., Haverkamp, V., Löwe, H., Storz, M., Wille, C., Guber, A., Jähnisch, K., and Baerns, M. (2000) Gas/liquid microreactors for direct fluorination of aromatic compounds using elemental fluorine, in Microreaction Technology: 3rd International Conference on Microreaction Technology, Proc. of IMRET 3 (ed. W. Ehrfeld), Springer, Berlin, pp. 526–540.

75. Haverkamp, V., Hessel, V., Liauw, M.A., Löwe, H., and Menges, M.G. (2007) Ind. Eng. Chem. Res., 64, 8558.

76. Födisch, R., Hönicke, D., Xu, Y., and Platzer, B. (2001) Liquid phase hydrogenation of p-nitrotoluene in microchannel reactors, in Microreaction Technology – IMRET 5: Proc. of the 5th International Conference on Microreaction Technology (eds M. Matlosz, W. Ehrfeld, and J.P. Baselt), Springer, Berlin, pp. 470–478.

77. Kursawe, A. and Hönicke, D. (2000) Epoxidation of ethene with pure oxygen as a model reaction for evaluating the performance of microchannel reactors. Proceedings of the 4th International Conference on Microreaction Technology, IMRET 4, AIChE Topical Conf. Proc., Atlanta, USA (5–9 March), pp. 153–166.

78. Hessel, V., Lowe, H., and Schonfeld, F. (2005) Chem. Eng. Sci., 60, 2479.

79. Capretto, L., Cheng, W., Hill, M., and Zhang, X. (2011) Top Curr. Chem., 304, 27–68.

80. Hessel, V., Ehrfeld, W., Golbig, K., Haverkamp, V., Löwe, H., and Richter, T. (1998) Gas/liquid dispersion processes in micromixers: the hexagon flow, in Process Miniaturization: 2nd International Conference on Microreaction Technology, IMRET 2; Topical Conf. Preprints (eds W. Ehrfeld, I.H. Rinard, and R.S. Wegeng), AIChE, New Orleans, USA, pp. 259–266.

81. Ehrfeld, W., Golbig, K., Hessel, V., Löwe, H., and Richter, T. (1999) Ind. Eng. Chem. Res., 38 (3), 1075.

82. Hessel, V., Hardt, S., Löwe, H., and Schönfeld, F. (2003) AIChE J., 49 (3), 566.

83. Rothstock, S., Hessel, V., Löb, P., and Werner, B. (2008) Chem. Eng. Technol., 31 (8), 1124–1129.

84. Löb, P., Pennemann, H., and Hessel, V. (2004) Chem. Eng. J., 101, 75.

85. Pennemann, H., Hessel, V., Kost, H.-J., Löwe, H., and de Bellefon, C. (2004) AIChE J., 50, 1814.

86. Schönfeld, F., Hessel, V., and Hofmann, C. (2004) Lab Chip, 4, 65.

87. Schwesinger, N., Frank, T., and Wurmus, H. (1996) J. Micromech. Microeng., 6, 99.

88. Kim, D.S., Lee, S.H., Kwon, T.H., and Ahn, C.H. (2005) Lab Chip, 5, 739.

89. Palanisamy, B. and Paul, B. (2012) Chem. Eng. Sci., 78, 46–52.

90. Yasukawa, T., Ninomiya, W., Ooyachi, K., Aoki, N., and Mae, K. (2011) Chem. Eng. J., 167 (2–3), 527–530.

91. Ravi Kumar, D.V., Prasad, B.L.V., and Kulkarni, A.A. (2012) Chem. Eng. J., 192 (2012), 357–368.

92. Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic, I., Stone, H.A., and Whitesides, G.M. (2002) Science, 295, 647.

93. Stroock, A.D., Dertinger, S.K.W., Whitesides, G.M., and Ajdari, A. (2002) Anal. Chem., 74, 5306.

94. Iliuta, I., Hamidipour, M., Schweich, D., and Larachi, F. (2012) Chem. Eng. Sci., 73, 299–313.

95. Dencic, I., de Croon, M., Meuldijk, J., and Hessel, V. (2011) J. Flow Chem., 1, 13–23.

96. ThalesNano, http://www.thalesnano.com/ (accessed June 2012).

97. Luthfi Machsun, A., Gozan, M., Nasikin, M., Setyahadi, S., and Yoo, Y. (2010) Biotechnol. Bioprocess Eng., 15 (6), 911–916.

98. Asanomi, Y., Yamaguchi, H., Miyazaki, M., and Maeda, H. (2011) Molecules, 16 (7), 6041–6059.

99. Pina, M.P., Mallada, R., Arruebo, M., Urbiztondo, M., Navascués, N., de la Iglesia, O., and Santamaria, J. (2011) J. Microporous Mesoporous Mater., 144 (1–3), 19–27.

100. Aran, C., Pacheco Benito, S., Luiten-Olieman, M.W.J., Er, S., Wessling, M., Lefferts, L., Benes, N.E., and Lammertink, R.G.H. (2011) J. Membr. Sci., 381 (1–2), 244–250.

101. Ye, S., Hamakawa, S., Tanaka, S., Sato, K., Esashi, M., and Mizukami, F. (2009) Chem. Eng. J., 155 (3), 829–837.

102. Chen, J., Chen, G., Wang, J., Shao, L., and Li, P. (2010) AIChE J., 57 (1), 239 –249.

103. O'Brien, M., Taylor, N., Polyzos, A., Baxendale, I.R., and Ley, S.V. (2011) Chem. Sci., 2, 1250–1257.

104. Kashid, M., Gupta, A., Renken, A., and Kiwi-Minsker, L. (2010) Chem. Eng. J., 158, 233–240.

105. Rebrov, E.V., Schouten, J.C., and de Croon, M.H. (2011) Chem. Eng. Sci., 66, 1374–1393 (Microfluidic Engineering).

106. Wada, Y., Schmidt, M., and Jensen, K. (2006) Ind. Eng. Chem. Res., 45, 8036–8042.

107. Schiemann, G. and Cornils, B. (1969) Chemie und Technologie Cyclischer Fluorverbindungen, Ferdinand Enke Verlag, Stuttgart, p 188–193.

108. Balz, G. and Schiemann, G. (1927) Ber. Dtsch. Chem. Ges., 60, 1186.

109. Grakauskas, V. (1969) J. Org. Chem., 34, 2835.

110. Purrington, S.T. and Kagen, B.S. (1986) Chem. Rev., 86, 997.

111. Grakauskas, V. (1970) J. Org. Chem., 35, 723.

112. Cacace, F., Giacomello, P., and Wolf, A.P. (1980) J. Am. Chem. Soc., 102, 3511.

113. Cacace, F. and Wolf, A.P. (1978) J. Am. Chem. Soc., 100, 3639.

114. Conte, L., Gambaretto, G.P., Napoli, M., Fraccaro, C., and Legnaro, E. (1995) J. Fluorine Chem., 70, 175.

115. Löb, P., Löwe, H., and Hessel, V. (2004) J. Fluorine Chem., 125, 1677.

116. Hessel, V., Löb, P., and Löwe, H. (2004) Chim. Oggi – Chem. Today, 22, 10.

117. Chambers, R.D. and Sandford, G. (2004) Chim. Oggi – Chem. Today, 22, 6–8.

118. Hessel, V., Ehrfeld, W., Golbig, K., Haverkamp, V., Löwe, H., Storz, M., Wille, C., Guber, A., Jähnisch, K., and Baerns, M. (1999) Gas-liquid microreactors for direct fluorination of aromatic compounds using elemental fluorine. Proceedings of the “3rd International Conference on Microreaction Technology, IMRET 3”, Frankfurt, Germany, pp. 526–540.

119. Jähnisch, K., Baerns, M., Hessel, V., Ehrfeld, W., Haverkamp, V., Löwe, H., Wille, C., and Guber, A. (2000) J. Fluorine Chem., 105, 117.

120. Chambers, R.D., Sandford, G., Trmcic, J., and Okazoe, T. (2008) Org. Process Res. Dev., 12 (2), 339–344.

121. de Mas, N., Gunther, A., Schmidt, M.A., and Jensen, K.F. (2009) Ind. Eng. Chem. Res., 48 (3), 1428–1434.

122. Chambers, R.D. and Spink, R.C.H. (1999) Chem. Commun., 883.

123. Chambers, R.D., Holling, D., Spink, R.C.H., and Sandford, G. (2001) Lab Chip, 1, 132.

124. Chambers, R.D., Fox, M.A., Holling, D., Nakano, T., Okazoe, T., and Sandford, G. (2005) Lab Chip, 5, 191.

125. Baumann, M., Baxendale, I.R., Martin, L.J., and Ley, S.V. (2009) Tetrahedron, 65 (33), 6611–6625.

126. Gustafsson, T., Gilmour, R., and Seeberger, P.H. (2008) Chem. Commun., 3022–3024.

127. Chambers, R.D., Holling, D., Sandford, G., Batsanov, A.S., and Howard, J.A.K. (2004) J. Fluorine Chem., 125, 661.

128. Chambers, R.D., Holling, D., Sandford, G., Puschmann, H., and Howard, J.A.K. (2002) J. Fluorine Chem., 117, 99.

129. Chambers, R.D., Holling, D., Rees, A.J., and Sandford, G. (2003) J. Fluorine Chem., 119, 81.

130. Ehrich, H., Linke, D., Morgenschweis, K., Baerns, M., and Jähnisch, K. (2002) Chimia, 56, 647.

131. Hiroshi, M., Yoshiko, H., Masashi, T., and Ryu, I. (2011) Chem. Eng. J., 167 (2–3), 567–571.

132. Wehle, D., Dejmek, M., Rosenthal, J., Ernst, H., Kampmann, D., Trautschold, S., and Pechatschek, R. (2000) Verfahren zur Herstellung von Monochloressigsäure in Mikroreaktoren. German Patent DE10036603 A1.

133. Müller, A., Cominos, V., Horn, B., Ziogas, A., Jähnisch, K., Grosser, V., Hillmann, V., Jam, K.A., Bazzanella, A., Rinke, G., and Kraut, M. (2005) Chem. Eng. J., 107, 205.

134. Müller, A., Cominos, V., Hessel, V., Horn, B., Schürer, J., Ziogas, A., Jähnisch, K., Hillmann, V., Großer, V., Jam, K.A., Bazzanella, A., Rinke, G., and Kraut, M. (2004) Chem. Ing. Tech., 76, 641.

135. Jähnisch, K. (2004) Chem. Ing. Tech., 76, 630.

136. Carofiglio, T., Donnola, P., Maggini, M., Rossetto, M., and Rossi, E. (2008) Adv. Syn. Catal., 350 (17), 2815–2822.

137. Ram Awatar, M., Chan Pil, P., and Dong-Pyo, K. (2011) Beilstein J. Org. Chem., 7, 1158–1163.

138. O'Brien, M., Taylor, N., Polyzos, A., Baxendale, I.R., and Ley, S.V. (2011) Chem. Sci., 2, 1250–1257.

139. Park, C.P., Maurya, R.A., Leeab, J.H., and Kim, D. (2011) Lab Chip, 11, 1941.

140. Lévesque, F. and Seeberger, P.H. (2012) Angew. Chem., 124 (7), 1738–1741.

141. Hessel, V., Ehrfeld, W., Herweck, T., Haverkamp, V., Löwe, H., Schiewe, J., Wille, C., Kern, T., and Lutz, N. (2000) Gas-liquid microreactors: hydrodynamics and mass transfer. Proceedings of the “4th International Conference on Microreaction Technology, IMRET 4”, Atlanta, USA, pp. 174–186.

142. Zanfir, M., Gavriilidis, A., Wille, Ch., and Hessel, V. (2005) Ind. Eng. Chem. Res., 44, 1742.

143. Chasanis, P., Lautenschleger, A., and Kenig, E.Y. (2010) Chem. Eng. Sci., 65 (3), 1125–1133.

144. Stefanescu, A., van Veen, A.C., Mirodatos, C., Beziat, J.C., and Duval-Brunel, E. (2007) Catal. Today, 125, 16–23.

145. Sebastian, V., de la Iglesia, O., Mallada, R., Casado, L., Kolb, G., Hessel, V., and Santamarí, J. (2008) J. Microporous Mesoporous Mater., 115, 147–155.

146. Irfan, M., Glasnov, T.N., and Kappe, C.O. (2011) ChemSusChem, 4, 300–316.

147. Födisch, R., Reschetilowski, W., and Hönicke, D. (1999) Heterogeneously catalyzed liquid-phase hydrogenation of nitro-aromatics using microchannel reactors, DGMK-Conference on the Future Role of Aromatics in Refining and Petrochemistry, Erlangen, Germany, 1999, pp. 231–238.

148. Trachsel, F., Tidona, B., Desportes, S., and von Rohr, R. (2009) J. Supercrit. Fluids, 48 (2), 146–153.

149. Sunitha, T. and Adeniyi, L. (2008) Int. J. Chem. React. Eng., 6, A112.

150. Yeong, K.K., Gavriilidis, A., Zapf, R., and Hessel, V. (2003) Catal. Today, 81, 641.

151. Yeong, K.K., Gavriilidis, A., Zapf, R., Kost, H.J., Hessel, V., and Boyde, A. (2005) Exp. Thermal Fluid Sci., 80, 463.

152. Yeong, K.K., Gavriilidis, A., Zapf, R., and Hessel, V. (2004) Chem. Eng. Sci., 59, 3491.

153. Bakker, J., Zieverink, M., Reintjens, R., Kapteijn, F., Moulijn, J.A., and Kreutzer, M. (2011) ChemCatChem, 3, 1155–1157.

154. McGovern, S., Harish, G., Pai, C.S., Mansfield, W., Taylor, J.A., Pau, S., and Besser, R.S. (2009) J. Chem. Tech. Biotechnol., 84 (3), 382–390.

155. Rebrov, E.V., Klinger, E.A., and Berenguer-Murcia, A. (2009) Org. Proc. Res. Dev., 13 (5), 991–998.

156. de Bellefon, C., Tanchoux, N., Caravieilhes, S., Grenouillet, P., and Hessel, V. (2000) Angew. Chem., Int. Ed., 112, 3584.

157. Leclerc, A., Alam'e, M., Schweich, D., Pouteau, P., Delattre, C., and de Bellefon, C. (2008) Lab Chip, 8, 814–817.

158. Lange, T., Heinrich, S., Liebner, C., Hieronymus, H., and Klemm, E. (2012) Chem. Eng. Sci., 69 (1), 440–448.

159. Enhong, C., Meenakshisundaram, S., Steve, F., Lam, K.F., Bethell, D., Knight, D.K., Hutchings, G.J., McMillan, P.F., and Gavriilidis, A. (2011) Chem. Eng. J., 167 (2–3), 734–743.

160. Yoshihisa, M., Mayuko, I., Tadashi, S., and Teijiro, I. (2009) Chem. Lett., 38 (8), 846–847.

161. Basheer, C., Swaminathan, S., Lee, H.K., and Valiyaveettil, S. (2005) Chem. Commun., 3, 409–410.

162. de Bellefon, C., Pestre, N., Lamouille, T., and Grenouillet, P. (2003) Adv. Synth. Catal., 345, 190.

163. de Bellefon, C., Caravieilhes, S., and Grenouillet, P. (2001) Application of a Micro Mixer for the High Throughput Screening of Fluid-Liquid Molecular Catalysts, Springer, Berlin, pp. 408–413.

164. de Bellefon, C., Abdallah, R., Lamouille, T., Pestre, N., Caravieilhes, S., and Grenouillet, P. (2002) Chimia, 56, 621.

165. Günther, A., Khan, S.A., Thalmann, M., Trachsel, F., and Jensen, K.F. (2004) Lab Chip, 4, 278.

166. Khan, S.A., Günther, A., Schmidt, M.A., and Jensen, K.F. (2004) Langmuir, 20, 8604.

167. Cabeza, V.S., Kuhn, S., Kulkarni, A.A., and Jensen, K.F. (2012) Langmuir, 28 (17), 7007–7013.

168. Murzin, D.Y., Mäki-Arvela, P., Toukoniitty, E., and Salmi, T. (2005) Catal. Rev., 47, 175.

169. Abdallah, R., Fumey, B., Meille, V., and de Bellefon, C. (2007) Catal. Today, 125 (1–2), 34–39.