Conclusions - Lesson 2 - Bioorganic and Biocatalytic Reactions - Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

10. Bioorganic and Biocatalytic Reactions

10.5. Conclusions

This chapter presents a wide coverage of the state-of-the-art applications of microfluidic reactors for bioorganic and biocatalytic reactions. The development of microreactors for biomolecular syntheses although much slower compared to μTAS is expected to continue to improve. Most biomolecules are expensive, and therefore high reaction yield and efficiency are desired for their synthesis. The main challenge that remains for microreactor biomolecular syntheses is the integration of various components for chemical reactions such as synthesis, analysis, extraction, separation, and concentration.

Many advantages have been reported with the use of microfluidic reactors in biocatalytic reactions. These advantages can potentially enable the rapid evaluation of different reaction conditions, overcoming the time constraints associated with biocatalytic process development. Biocatalysis by enzymatic microreactors have been widely reported. Enzymatic microreactors are classified based on their applications such as microreactors for enzymatic diagnosis and genetic analysis, for enzyme-linked immunoassays, and for analysis of proteins. Microreactors for genetic analysis have been widely exploited, while integration of microfluidics with immunoassays has demonstrated advantages and the future of this field is promising. On the other hand, the future of miniaturization in proteomic applications is getting brighter as demonstrated by the developing trend in the field. One of the most important domains of enzymatic microreactors is protein-expression, which encompasses protein and peptide mapping. The success of this field depends on achieving greater sophistication of microdevices.

The use of microfluidic reactors within the scope of biocatalysis has been gaining momentum and has been clearly contributing to speedup the rate of process development in an economically effective manner. Owing to acceleration of mass transfer, the productivity of enzymatic microreactors in the presented wide range of example cases is significantly higher than classical batch reactors currently applied in industry. However, the contribution of these microdevices at bioprocess production scale is scarce, and the widespread implementation of these microdevices for enzyme screening and high-throughput reaction optimization will be highly dependent on the levels of automation and integration with analytics. As demonstrated by the developing trend in the field related to its application, it can be expected that the relevance of miniaturization within biocatalysis and biotransformations is to further increase, particularly, the development of microfluidic devices in terms of design and flexibility as screening and process characterization tools.

References

1. Wohlgemuth, R. (2012) Curr. Opin. Biotechnol., 21, 713–724.

2. Lye, G.J., Ayazi-Shamlou, P., Baganz, F., Dalby, P.A., and Woodley, J.M. (2003) Trends Biotechnol., 21, 29–37.

3. Urban, P.L., Goodall, D.M., and Bruce, N.C. (2006) Biotechnol. Adv., 24, 42–57.

4. Gerey, K., Codee, J.D.C., and Seeberger, P.H. (2006) Chemistry, 12, 8434–8442.

5. Ehrfield, W., Hessel, V., and Lowe, H. (2005) Microreactors: New Technology for Modern Chemistry, Wiley-VCH Verlag GmbH, Weinheim, pp. 1–69.

6. Lee, S.J., Lee, S.J., and Lee, S.Y. (2004) Appl. Microbiol. Biotechnol., 64, 289–299.

7. Ohno, K., Tachikawa, K., and Manz, A. (2008) Electrophoresis, 29, 4443–4453.

8. Matosevic, S., Lye, G.J., and Baganz, F. (2011) J. Biotechnol., 155, 320–329.

9. Miyazaki, M., Honda, T., Yamaguchi, H., Briones, M.P.P., and Maeda, H. (2008) Biotechnol. Genet. Eng. Rev., 25, 405–428.

10. Fernandes, P. (2010) Int. J. Macromol. Sci., 11, 858–879.

11. Carr, P.W. and Schifreen, R.S. (1980) Fundamental and analytical characteristics of immobilized enzyme reactors, in Midland Macromolecular Monographs (Silylated Surfaces), vol.7, John Wiley & Sons, Inc., New York, pp. 173–188.

12. Paegel, B.M., Blazej, R.G., and Mathies, R.A. (2003) Curr. Opin. Biotechnol., 14, 42–50.

13. Zhang, Y., Jinlian, X., Ma, W., and Zheng, W. (2006) Biotechnol. Adv., 24, 234–284.

14. Zimmermann, M., Delamarche, E., Wolf, M., and Hunziker, P. (2005) Biomed. Microdevices, 7, 99–110.

15. Cho, J.H., Han, S.M., Paek, E.H., Cho, I.H., and Paek, S.H. (2006) Anal. Chem., 78, 793–800.

16. Parsa, H., Chin, C.D., Mongkolwisetwara, P., Lee, B.W., Wang, J.J., and Sia, S.K. (2008) Lab Chip, 8, 2062–2070.

17. Watts, P., Wiles, C., Haswell, S.J., Pombo-Villar, E., and Styring, P. (2001) Chem. Commun., 990–991.

18. Watts, P. and Wiles, C. (2002) Tetrahedron, 58, 5427–5439.

19. Watts, P., Haswell, S.J., and Pombo-Villar, E. (2004) Chem. Eng. J., 101, 237–240.

20. Miyazaki, M., Yamashita, K., Yamaguchi, Y., Honda, T., Nakamura, H., Fujii, M., and Maeda, H. (2004) New J. Chem., 28, 1622–1626.

21. Flogel, O., Codee, J.D.C., Seebach, D., and Seeberger, P.H. (2006) Angew. Chem., Int. Ed., 45, 7000–7003.

22. Yamamoto, T., Hino, M., Kakuhata, R., Nojima, T., Shinohara, Y., Baba, Y., and Fujii, T. (2008) Anal. Sci., 24, 243–246.

23. Ratner, D.M., Murphy, E.R., Jhunjhunwala, M., Snyder, D.A., Jense, K.F., and Seeberger, P.H. (2005) Chem. Commun., 578–580.

24. Fukase, K., Takashima, M., Hori, Y., Tanaka, D., Tanaka, K., and Kasumoto, S. (2005) Synlett, 2342–2346.

25. Kanno, K., Maeda, H., Izumo, S., Ikuno, M., Takeshita, K., Tashiro, A., and Fujii, M. (2002) Lab Chip, 2, 15–18.

26. Lee, C.C., Sui, G.D., Elizarov, A., Shu, C.Y.J., Shin, Y.S., Dooley, A.N., Huang, J., Daridon, A., Wyatt, P., Stout, D., Kolb, H.C., Witte, O.N., Satyamurthy, N., Heath, J.R., Phelps, M.E., Quake, S.R., and Tseng, H.R. (2005) Science, 310, 1793–1796.

27. Carrel, F.R., Geyer, K., Codée, J.D., and Seeberger, P.H. (2007) Org. Lett., 9, 2285–2288.

28. Tanaka, S., Goi, T., Tanaka, K., and Fukase, K. (2007) J. Carbohydr. Chem., 26, 369–394.

29. Chen, Y.-T., Chen, K.-H., Fang, W.-F., Tsai, S.-H., Fang, J.-M., and Yang, J.-T. (2011) Chem. Eng. J., 174, 421–424.

30. Fang, W.F. and Yang, J.T. (2009) Sens. Actuators B., 140, 629–642.

31. Chen, Y.T., Fang, W.F., Liu, Y.C., and Yang, J.T. (2011) Microfluidics Nanofluidics, 11, 339–352.

32. Lee, D. and Chen, Y.T. (2011) AIChE J., 57, 571–580.

33. Huang, Y., Castrataro, P., Lee, C.C., and Quake, S.R. (2007) Lab Chip, 7, 24–26.

34. Huang, M.C., Ye, H., Kuan, Y.K., Li, M.-H., and Ying, J.Y. (2009) Lab Chip, 9, 276–285.

35. Mueller, S., Coleman, J.R., and Wimmer, E. (2009) Chem. Biol., 16, 337–347.

36. Lee, C.C., Snyder, T.M., and Quake, S.R. (2010) Nucleic Acids Res., 38, 2514–2521.

37. Ramsay, G. (1998) Nat. Biotechnol., 16, 40–44.

38. Heller, M.J. (2002) Annu. Rev. Biomed. Eng., 4, 129–153.

39. Kricka, L.J. and Wilding, P. (2003) Anal. Bioanal. Chem., 377, 820–825.

40. Zhang, C., Xu, J., Ma, W., and Zheng, W. (2006) Biotechnol. Adv., 24, 243–284.

41. Park, S., Zhang, Y., Lin, S., Wang, T.Z., and Yang, S. (2011) Biotechnol. Adv., 29, 830–839.

42. Neuzil, P., Zhang, C., Pipper, J., Oh, S., and Zhuo, L. (2006) Nucleic Acids Res., 34, e77, 1–9.

43. Ahmad, F. and Hashsham, S.A. (2012) Anal. Chim. Acta, 733, 1–15.

44. Whitesides, G.M. (2006) Nature, 442, 368–373.

45. Hashsham, S.A., Gulari, E., and Tiedje, J.M. (2007) Microbe, 2911, 531–536.

46. Munchow, G., Dadic, D., Doffing, F., Hardt, S., and Drese, K.-S. (2005) Expert Rev. Mol. Diagn., 5, 613–620.

47. Panaro, N.J., Lou, X.J., Fortina, P., Kricka, L.J., and Wilding, P. (2005) Biomol. Eng., 21, 157–162.

48. Legendre, L.A., Bienvenue, J.M., Roper, M.G., Ferrance, J.P., and Landers, J.P. (2006) Anal. Chem., 78, 1444–1451.

49. Kim, J., Mauk, M., Chen, D., Qiu, X., Kim, J., Gale, B., and Bau, H.H. (2010) Analyst, 135, 2408–2414.

50. Cao, Q., Mahalanabis, M., Chang, J., Carey, B., Hsieh, C., Stanley, A., Odel, C., Mitchell, P., Feldman, J., Pollock, N.R., and Klapperich, C.M. (2012) PLos ONE, 7, e33176, 1–11.

51. Liu, R.H., Yang, J., Lenigk, R., Bonanno, J., and Grodzinski, P. (2004) Anal. Chem., 76, 1824–1831.

52. Easley, C.J., Karlinsey, J.M., Bienvenue, J.M., Legendre, L.A., Roper, M.G., Feldman, S.H., Highes, M.A., Hewlett, E.L., Merkel, T.J., Ferrance, J.P., and Landers, J.P. (2006) Proc. Natl. Acad. Sci. USA, 103, 19272–19277.

53. Pipper, J., Zhang, Y., Neuzil, P., and Hsieh, T.M. (2008) Angew. Chem., Int. Ed., 47, 3900–3904.

54. Sauer-Budge, A.F., Mirer, P., Chatterjee, A., Klapperich, C.M., Chargin, D., and Sharon, A. (2009) Lab Chip, 9, 2803–2810.

55. Kulinski, M.D., Mahalanabis, M., Gillers, S., Zhang, J.Y., Singh, S., and Klapperich, C.M. (2009) Biomed. Microdevices, 11, 671–678.

56. Pan, X., Jiang, L., Liu, K., Lin, B., and Qin, J. (2010) Anal. Chim. Acta, 674, 110–115.

57. Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Handique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H., and Burke, D.T. (1998) Science, 282, 484–487.

58. Katsura, S., Harada, N., Maeda, Y., Komatsu, J., Matsuura, S., Takashima, K., and Mizuno, A. (2004) J. Biosci. Bioeng., 98, 293–297.

59. Xie, H., Li, B., Zhong, R., Qin, J., Zhu, Y., and Lin, B. (2008) Electrophoresis, 29, 4956–4963.

60. Shirai, M., Goto, M., Suzuki, S., Kono, K., Kajiyama, T., and Kambara, H. (2011) Anal. Chem., 83, 7560–7565.

61. Sims, P.A., Greenleaf, W.J., Duan, H., and Xie, X.S. (2011) Nat. Methods, 8, 575–580.

62. Hardin, S., Gao, X., Briggs, J., Willson, R., and Tu, S. (2008) Methods for real-time single molecule sequence determination. US Patent 7,329,492.

63. Ohashi, T., Mawatari, K., Sato, K., Tokeshi, M., and Kitamori, T. (2009) Lab Chip, 9, 991–995.

64. Endo, T., Okuyama, A., Matsubara, Y., Nishi, K., Kobayashi, M., Yamamura, S., Morita, Y., Takamura, Y., Mizukami, H., and Tamiya, E. (2005) Anal. Chim. Acta, 531, 7–13.

65. Chatrathi, M.P., Collins, G.E., and Wang, J. (2007) Methods Mol. Biol., 385, 215–224.

66. Liu, Y., Wang, H., Huang, J., Yang, J., Liu, B., and Yang, P. (2009) Anal. Chim. Acta, 650, 77–82.

67. Yang, Z., Zong, C., Ju, H., and Yan, F. (2011) Anal. Chim. Acta, 706, 143–148.

68. Krenkova, J. and Foret, F. (2004) Electrophoresis, 25, 3550–3563.

69. Foret, F. and Preisler, J. (2002) Proteomics, 2, 360–372.

70. Peterson, D.S., Rohr, T., Svec, F., and Frechet, J.M.J. (2002) Anal. Chem., 74, 4081–4088.

71. Guo, Z., Xu, S., Lei, Z., Zou, H., and Guo, B. (2003) Electrophoresis, 24, 3633–3639.

72. Wu, H., Tian, Y., Liu, B., Lu, H., Wang, X., Zhai, J., Jin, H., Yang, P., Xu, Y., and Wang, H. (2004) J. Proteome Res., 3, 1201–1209.

73. Qu, H., Wang, H., Huang, Y., Zhong, W., Lu, H., Kong, J., Yang, P., and Liu, B. (2004) Anal. Chem., 76, 6426–6433.

74. Huang, Y., Shan, W., Liu, B., Liu, Y., Zhang, Y., Zhao, Y., Lu, H., Tang, Y., and Yang, P. (2006) Lab Chip, 6, 534–539.

75. Zhang, Y.H., Liu, Y., Kong, J.L., Yang, P.Y., Tang, Y., and Liu, B.H. (2006) Small, 2, 1170–1173.

76. Feng, S., Ye, M., Jiang, X., Jin, W., and Zou, H. (2006) J. Proteome Res., 5, 422–428.

77. Krenkova, J., Kleparnik, K., and Foret, F. (2007) J. Chromatogr. A, 1159, 110–118.

78. Wu, H., Zhai, J., Tian, Y., Lu, H., Wang, X., Jia, W., Liu, B., Yang, P., Xu, Y., and Wang, H. (2004) Lab Chip, 4, 588–597.

79. Lee, J., Musyimi, H.K., Soper, S.A., and Murray, K.K. (2008) J. Am. Soc. Mass Spectrom., 19, 964–972.

80. Pereira-Medrano, A.G., Forster, S., Fowler, G.J., McArthur, S.L., and Wright, P.C. (2010) Lab Chip, 10, 3397–3406.

81. Fan, H. and Chen, G. (2007) Proteomics, 7, 3445–3449.

82. Jin, L.J., Ferrance, J., Sanders, J.C., and Landers, J.P. (2003) Lab Chip, 3, 11–18.

83. Bílková, Z., Slováková, M., Minc, N., Fütterer, C., Cecal, R., Horák, D., Benes, M., le Potier, I., Krenková, J., Przybylski, M., and Viovy, J.L. (2006) Electrophoresis, 27, 1811–1124.

84. Slovakova, M., Minc, N., Bilkova, Z., Smadja, C., Faigle, W., Fütterer, C., Taverna, M., and Viovy, J.L. (2005) Lab Chip, 5, 935–942.

85. Liu, J., Lin, S., Qi, D., Deng, C., Yang, P., and Zhang, X. (2007) J. Chromatogr. A, 1176, 169–177.

86. Le Nel, A., Minc, N., Smadja, C., Slovakova, M., Bilkova, Z., Peyrin, J.M., Viovy, J.L., and Taverna, M. (2008) Lab Chip, 8, 294–301.

87. Ekström, S., Önnerfjord, P., Nilsson, J., Bengtsson, M., Laurell, T., and Marko-Varga, G. (2000) Anal. Chem., 72, 286–293.

90. Liang, Y., Tao, D., Ma, J., Sun, L., Zhen, L., Zhang, L., and Zhang, Y. (2011) J. Chromatogr. A, 1218, 2898–2905.

88. Gao, J., Xu, J., Locascio, L.E., and Lee, C.S. (2001) Anal. Chem., 73, 2648–2655.

91. Liu, Y., Lu, H., Zhong, W., Song, P., Kong, J., Yang, P., Girault, H.H., and Liu, B. (2006) Anal. Chem., 78, 801–808.

92. Liu, Y., Xue, Y., Ji, J., Chen, X., Kong, J., Yang, P., Girault, H.H., and Liu, B. (2007) Mol. Cell. Proteomics, 6, 1428–1436.

93. Huang, Y., Shan, W., Liu, B., Liu, Y., Zhang, Y., Zhao, Y., Lu, H., Tang, Y., and Yang, P. (2006) Lab Chip, 6, 534–539.

94. Liuni, P., Rob, T., and Wilson, D.J. (2010) Rapid Commun. Mass Spectrom., 24, 315–320.

95. Bickerstaff, G.F. (1991) Enzymes in Industry and Medicine, Cambridge University Press, Cambridge.

96. Hahn, R., Podgornik, A., Merhar, M., Schallaun, E., and Jungbauer, A. (2001) Anal. Chem., 73, 5126–5132.

97. Costa, S.A., Azevedo, H.S., and Reis, R.L. (2005) Enzyme immobilization in biodegradable polymers for biomedical applications, in Biodegradable Systems in Tissue Engineering and Regenerative Medicine (eds R.L. Reis and J.S. Roman), CRC Press, Boca Raton, FL, pp. 301–323.

98. Wu, H., Tian, Y., Liu, B., Lu, H., Wang, X., Zhai, J., Jin, H., Yang, P., Xu, Y., and Wang, H. (2004) J. Proteome Res., 3, 1201–1209.

99. Qu, H., Wang, H., Huang, Y., Zhong, W., Lu, H., Kong, J., Yang, P., and Liu, B. (2004) Anal. Chem., 76, 6426–6433.

100. Liu, Y., Qu, H., Xue, Y., Wu, Z., Yang, P., and Liu, B. (2007) Proteomics, 7, 1373–1378.

101. Sakai-Kato, K., Kato, M., and Toyooka, T. (2003) Anal. Chem., 75, 388–393.

102. Ji, J., Zhang, Y., Zhou, X., Kong, J., and Tang, Y., and Liu, B. (2008) Anal. Chem., 80, 2457–2463.

103. Zhou, Y., Yi, T., Park, S.-S., Chadwick, W., Shen, R.-F., Wu, W.W., Martin, B., and Maudsley, S. (2011) J. Proteomics, 74, 1030–1035.

104. Ma, J., Zhang, L., Liang, Z., Zhang, W., and Zhang, Y. (2007) J. Sep. Sci., 30, 3050–3059.

105. Logan, T.C., Clark, D.S., Stachowiak, T.B., Svec, F., and Frechet, J.M. (2007) Anal. Chem., 79, 6592–6598.

106. Ma, J., Liang, Z., Qiao, X., Deng, Q., Tao, D., Zhang, L., and Zhang, Y. (2008) Anal. Chem., 80, 2949–2956.

107. Sakai-Kato, K., Kato, M., and Toyooka, T. (2003) Anal. Chem., 75, 388–393.

108. Wu, H., Tian, Y., Liu, B., Lu, H., Wang, X., Zhai, J., Jin, H., Yang, P., Xu, Y., and Wang, H. (2004) J. Proteome Res., 3, 1201–1209.

109. Qu, H., Wang, H., Huang, Y., Zhong, W., Lu, H., Kong, J., Yang, P., and Liu, B. (2004) Anal. Chem., 76, 6426–6433.

110. Huang, Y., Shan, W., Liu, B., Liu, Y., Zhang, Y., Zhao, Y., Lu, H., and Tang, Y., and Yang, P. (2006) Lab Chip, 6, 534–539.

111. Zhang, Y.H., Liu, Y., Kong, J.L., Yang, P.Y., Tang, Y., and Liu, B.H. (2006) Small, 2, 1170–1173.

112. Bonneil, E., Mercier, M., and Waldron, K.C. (2000) Anal. Chim. Acta, 404, 29–45.

113. Luckarift, H.R., Ku, B.S., Dordick, J.S., and Spain, J.C. (2007) Biotechnol. Bioeng., 98, 701–705.

114. Kerby, M.B., Legge, R.S., and Tripathi, A. (2006) Anal. Chem., 78, 8273–8380.

115. Russom, A., Tooke, N., Andersson, H., and Steme, G. (2005) Anal. Chem., 77, 7505–7511.

116. Seong, G.H., Heo, J., and Crooks, R.M. (2003) Anal. Chem., 75, 3161–3167.

117. Licklider, L. and Kuhr, W.G. (1998) Anal. Chem., 70, 1902–1908.

118. Bossi, A., Guizzardi, L., D'Acuto, M.T., and Righetti, P.G. (2004) Anal. Bioanal. Chem., 378, 1722–1728.

119. Zhao, C., Jiang, H., Smith, D.R., Bruckenstein, S., and Wood, T.D. (2006) Anal. Biochem., 359, 167–175.

120. Stigter, E.C., de Jong, G.J., and van Bennekom, W.P. (2008) Anal. Chim. Acta, 619, 231–238.

121. Miyazaki, M., Kaneno, J., Uehara, M., Fujii, M., Shimizu, H., and Maeda, H. (2003) Chem. Commun., 648–649.

122. Honda, T., Miyazaki, M., Nakamura, H., and Maeda, H. (2005) Chem. Commun., 5062–5064.

123. Honda, T., Miyazaki, M., Nakamura, H., and Maeda, H. (2006) Adv. Synth. Catal., 348, 2163–2171.

124. Yamaguchi, H., Miyazaki, M., Kawazumi, H., and Maeda, H. (2010) Anal. Biochem., 407, 12–18.

125. Peterson, D.S., Rohr, T., Svec, F., and Fréchet, J.M. (2002) Anal. Chem., 74, 4081–4088.

126. Ye, M., Hu, S., Schoenherr, H.M., and Dovichi, N.J. (2004) Electrophoresis, 25, 1319–1326.

127. Dulay, M.T., Baca, Q.J., and Zare, R.N. (2005) Anal. Chem., 77, 4604–4610.

128. Duan, J., Liangliang, S., Liang, Z., Zhang, J., Wang, H., Zhang, L., Zhang, W., and Zhang, Y. (2006) J. Chromatogr. A, 1106, 165–174.

129. Ma, J., Liang, Z., Qiao, X., Deng, Q., Tao, D., Zhang, L., and Zhang, Y. (2008) Anal. Chem., 80, 2949–2956.

130. Lin, W. and Skinner, C.D. (2009) J. Sep. Sci., 32, 2642–2652.

131. Sproβ, J. and Sinz, A. (2010) Anal. Chem., 82, 1434–1443.

132. Wang, T., Ma, J., Wu, S., Yuan, H., Zhang, L., Liang, Z., and Zhang, Y. (2011) Electrophoresis, 32, 2848–2856.

133. Li, Y., Wojcik, R., and Dovichi, N.J. (2011) J. Chromatogr. A, 1218, 2007–2011.

134. Cao, L. and Schmid, R.D. (2005) Carrier-Bound Immobilized Enzymes: Principles, Applications and Design, Wiley-VCH Verlag GmbH, Weinheim.

135. Guo, Z., Xu, S., Lei, Z., Zou, H., and Guo, B. (2003) Electrophoresis, 24, 3633–3639.

136. Xu, X., Wang, X., Liu, Y., Liu, B., Wu, H., and Yang, P. (2008) Rapid Commun. Mass Spectrom., 22, 1257–1264.

137. Wang, S.S., Li, Q., Lu, X.F., Liu, T., Zhang, W.B., Geng, L.N., and Deng, Y.L. (2010) Chin. Sci. Bull., 55, 910–914.

138. Lye, G.J., Ayazi-Shamlou, P., Baganz, F., Dalby, P.A., and Woodley, J.M. (2003) Trends Biotechnol., 21, 29–37.

139. Miyazaki, M. and Maeda, H. (2006) Trends Biotechnol., 24, 463–470.

140. Kato, M., Sakai-Kato, K., Jin, H., Kubota, K., Miyano, H., Toyo'oka, T., Dulay, M.T., and Zare, R.N. (2004) Anal. Chem., 76, 1896–1902.

141. Kanno, K., Kawazumi, H., Miyazaki, M., Maeda, H., and Fujii, M. (2002) Aust. J. Chem., 55, 687–690.

142. Maruyama, T., Uchida, J., Ohkawa, T., Futami, T., Katayama, K., Nishizawa, K., Sotowa, K., Kubota, F., Kamiya, N., and Goto, M. (2003) Lab Chip, 3, 308–312.

143. Tisma, M., Zelic, B., Vasic-Racki, D., Znidarsic-Plazl, P., and Plazl, I. (2009) Chem. Eng. J., 149, 383–388.

144. Swarts, J.W., Vossenberg, P., Meerman, M.H., Janssen, A.E., and Boom, R.M. (2008) Biotechnol. Bioeng., 99, 855–861.

145. Pohar, A., Plazl, I., and Žnidaršiimg-Plazl, P. (2009) Lab Chip, 9, 3385–3390.

146. Znidarsic-Plazl, P. and Plazl, I. (2009) Process Biochem., 44, 1115–1121.

147. Kashid, M.N. and Kiwi-Minsker, L. (2009) Ind. Eng. Chem. Res., 48, 6465–6485.

148. Koch, K., van der Ber, R.J.F., Niewland, P.J., Wijtmans, R., Wubbolts, M.G., Schoemaker, H.E., Rutjes, F.P.J.T., and van Hest, J.C.M. (2008) Chem. Eng. J., 135, S89–S92.

149. Koch, K., van der Berg, R.J.F., Nieuwland, P.J., Wijtmans, R., Shoemaker, H.E., van Hest, J.C.M., and Rutjes, F.P.J.T. (2008) Biotechnol. Bioeng., 99, 1028–1033.

150. Ristenpart, W.D., Wan, J., and Stone, H.A. (2008) Anal. Chem., 80, 3270–3276.

151. Marques, M.P.C., Fernandes, P., Cabral, J.M.S., Znidarsic-Plazl, P., and Plazl, I. (2010) Chem. Eng. J., 160, 708–714.

152. Mohr, S., Fisher, K., Scrutton, N.S., Goddard, N.J., and Fielden, P.R. (2010) Lab Chip, 10, 1929–1936.

153. Karande, R., Schmid, A., and Buehler, K. (2011) Adv. Synth. Catal., 353, 2511–2521.

154. O'Sullivan, B., Al-Bahrani, H., Lawrence, J., Campos, M., Cazares, A., Baganz, F., Wohlgemuth, R., Hailes, H., and Szita, N. (2012) J. Mol. Catal., B Enzym., 77, 1–8.

155. Honda, H., Miyazaki, M., Yamaguchi, Y., Nakamura, H., and Maeda, H. (2007) Lab Chip, 7, 366–372.

156. Cao, L., Van Langen, L., and Sheldon, R.A. (2003) Curr. Opin. Biotechnol., 14, 387–394.

157. Hickey, A.M., Marle, L., McCreedy, T., Watts, P., Greenway, G.M., and Littlechild, J.A. (2007) Biochem. Soc. Trans., 35, 1621–1630.

158. Srinivasan, A., Bach, H., Sherman, D.H., and Dordick, J.S. (2004) Biotechnol. Bioeng., 88, 528–535.

159. Drager, G., Kiss, C., Kunz, U., and Kirsching, A. (2007) Org. Biomol. Chem., 5, 3657–3664.

160. Jones, F., Lu, Z., and Elmore, B.B. (2002) Appl. Biochem. Biotechnol., 98, 627–640.

161. Thomsen, M.S., Polt, P., and Nidetzky, B. (2007) Chem. Commun., 2527–2529.

162. Koh, W.-G. and Pishko, M. (2005) Sens. Actuators B: Chem., 106, 335–342.

163. He, P., Greenway, G., and Haswell, S.J. (2009) Microfluidics Nanofluidics, 8, 565–573.

164. Hickey, A.M., Ngamson, B., Wiles, C., Greenway, G.M., Watts, P., and Littlechild, J.A. (2009) Biotechnol. J., 4, 510–516.

165. Anuar, S.T., Villegas, C., Mugo, S.M., and Curtis, J.M. (2011) Lipids, 46, 545–555.

166. Schwarz, A., Thomsen, M.S., and Nidetzky, B. (2009) Biotechnol. Bioeng., 103, 865–872.

167. Mugo, S.M. and Ayton, K. (2010) J. Mol. Catal. B: Enzym., 67, 202–207.

168. Kataoka, S., Endo, A., Oyama, M., and Ohmori, T. (2009) Appl. Catal. A: Gen., 359, 108–112.

169. Kataoka, S., Takeuchi, Y., Harada, A., Yamada, M., and Endo, A. (2010) Green Chem., 12, 331–337.

170. Matsuura, S., Ishii, R., Itoh, T., Hamakawa, S., Tsunoda, T., Hanaoka, T., and Mizukami, F. (2011) Chem. Eng. J., 167, 744–749.

171. Kawakami, K., Sera, Y., Sakai, S., Ono, T., and Ijima, H. (2005) Ind. Eng. Chem. Res., 44, 236–240.

172. Song, Y.S., Shin, H.Y., Lee, J.Y., Park, C., and Kim, S.W. (2012) Food Chem., 133, 611–617.

173. Schilke, K.F. and Wilson, K.L. (2010) AIChE J., 26, 1597–1605.

174. Mao, H., Yang, T., and Cremer, P.S. (2002) Anal. Chem., 74, 379–385.

175. Lee, M.Y., Snirivasan, A., Ku, B., and Dordick, J.S. (2003) Biotechnol. Bioeng., 83, 20–28.

176. Ku, B., Cha, J., Srinivasan, A., Kwon, S.J., Jeong, J.C., Sherman, D.H., and Dordick, J.S. (2006) Biotechnol. Prog., 22, 1102–1107.

177. Luckarift, H.R., Ku, B.S., and Spain, J.C. (2007) Biotechnol. Bioeng., 98, 701–705.

178. Matosevic, S., Lye, G.J., and Baganz, F. (2011) J. Biotechnol., 155, 320–329.

179. Vong, T.H., Schoffelen, S., van Donge, S.F.M., van Beek, T.A., Zuilhof, H., and van Hest, J.C.M. (2011) Chem. Sci., 2, 1278–1285.

180. He, P., Greenway, G., and Haswell, S.J. (2010) Microfluidics Nanofluidics, 8, 565–573.