Challenges and Concerns - Industrial Microreactor Process Development up to Production - Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

Microreactors in Organic Chemistry and Catalysis, Second Edition (2013)

11. Industrial Microreactor Process Development up to Production

11.5. Challenges and Concerns

Concerns about an industrial use of microprocess technology still exist [86]. Process chemists need to be familiarized with the new tool. Often it seems that these soft factors are even more relevant than the hard factors. Nonetheless, the performance of microprocess technology must show up a clear driver in the interplay of operating and capital costs of existing equipment and respective costs on the microflow processing side.

Processes that work best with microreactors are fast and generate high-value materials. This restricts the use currently to such niches [86]. However, it is also more and more recognized that speedup of reactions can be achieved by changes in the chemical processing and synthesis in view that is tailored for microreactors. This is initiated with innovative Novel Process Windows, starting with DBU project cluster in Germany (2002), DBU German Environmental Agency up to recent Factory of the Future projects.

Microprocess technology was initially regarded as a rather radical change in chemical engineering. However, in the past decade more and more companies are dedicating their research to the development of various microreactor-based processes and, upon successful initial studies, building pilot plants for further application of this novel technology. Also, other modern technologies such as microwave organic synthesis, ionic liquids, and supercritical processing are being used jointly with microreactors in order to enable further intensification. In this way, some current limitations of microprocess technology are overcome (e.g., concerning solubility, upper operating temperature, heat supply).

Recent patent review in the field of microtechnology [87] showed a decrease in the number of new microdevices, but an increase in the number of their applications and testing for various processes.

Microprocess technology is strongly knowledge driven. Education and training will play a major role here.

Acknowledgement

This work is funded by the EU project POLYCATunder grant agreement No. CP-IP 246095-2 of the European Community's Seventh Framework Program and by the ERC Advanced Grant “Novel Process Windows” of Prof. Dr. Volker Hessel at Eindhoven University of Technology (TU/e) in the Netherlands.

References

1. Hogan, J. (2006) Nature, 442, 351.

2. Reisch, M. (2004) Chem. Eng. News, 82, 9.

3. Rouhi, A.M. (2004) Chem. Eng. News, 82, 18.

4. Freemantle, M. (2004) Chem. Eng. News, 82, 39.

5. Mullin, R. (2009) Chem. Eng. News, 87 (44).

6. Hessel, V., Vural, I., Wang, Q., Noel, T., and Lang, J. (2012) Chem. Eng. Technol., 35 (7), 1184–1204.

7. The European Chemical Factory of the Future, https://www.process-worldwide.com/engineering_construction/
operational_excellence/operational_ excellence/articles/332787/
(last accessed August 2012).

8. Lonza, Lonza builds “Factory of Tomorrow”, http://www.lonza.com/about-lonza/media-center/news/2012/factory-of-tomorrow-e.aspx (last accessed August 2012).

9. McCoy, M. (2010) Chem. Eng. News, 88, 21.

10. Buchholz, S.D. (2011) Implementation of flow chemistry protocols. IPIT Symposium, Delft, The Netherlands.

11. Evonik Magazine, Elements 37, Issue 4, 2011.

12. Watts, P., Wiles, C., Haswell, S.J., and Pombo-Villar, E. (2002) Lab Chip, 2, 141.

13. Watts, P., Wiles, C., Haswell, S.J., and Pombo-Villar, E. (2002) Tetrahedron, 58, 5427.

14. Merrifield, R.B. (1963) J. Am. Chem. Soc., 85, 2149.

15. Erickson, B.W. and Merrifield, R.B. (1976) in The Proteins, 3rd edn, vol.2 (eds H. Neurath and R.L. Hill), Academic Press, New York, p. 256.

16. Watts, P., Wiles, C., Haswell, S.J., Pombo-Villar, E., and Styring, P. (2001) in Microreaction Technology – IMRET 5: Proceedings of the 5th International Conference on Microreaction Technology (eds M. Matlosz, W. Ehrfeld, and J.P. Baselt), Springer, Berlin, 508 pp.

17. Garcia-Egido, E., Wong, S.Y.F., and Warrington, B.H. (2002) Lab Chip, 2, 31.

18. Fletcher, P.D.I., Haswell, S.J., Pombo-Villar, E., Warrington, B.H., Watts, P., Wong, S.Y.F., and Zhang, X. (2002) Tetrahedron, 58, 4735.

19. Garcia-Egido, E. and Wong, S.Y.F. (2001) in Micro Total Analysis Systems (eds J.M. Ramsey and A.van den Berg) Kluwer Academic Publishers, Dordrecht, 517 pp.

20. Garcia-Egido, E., Spikmans, V., Wong, S.Y.F., and Warrington, B.H. (2003) Lab Chip, 3, 67.

21. Sands, M., Haswell, S.J., Kelly, S.M., Skelton, V., Morgan, D., Styring, P., and Warrington, B. (2001) Lab Chip, 1, 64.

22. Wiles, C., Watts, P., Haswell, S.J., and Pombo-Villar, E. (2001) Lab Chip, 1, 100.

23. Skelton, V., Grenway, G.M., Haswell, S.J., Styring, P., Morgan, D.O., Warrington, B.H., and Wong, S.Y.F. (2001) Analyst, 126, 11.

24. Skelton, V., Greenway, G.M., Haswell, S.J., Styring, P., Morgan, D.O., Warrington, B.H., and Wong, S. (2000) 4th International Conference on Microreaction Technology, IMRET 4, AIChE Topical Conference Proceedings, Atlanta, GA, USA, p. 78.

25. Haswell, S.J. (2001) in Micro Total Analysis System (eds A.van den Berg and J.M. Ramsay), Kluwer Academic Publishers, Dordrecht, 637 pp.

26. Nielsen, C.A., Chrisman, R.W., LaPointe, E., and Miller, T.E. (2002) Anal. Chem., 74, 3112.

27. Wiles, C., Watts, P., Haswell, S., and Pombo-Villar, E. (2004) Lab Chip, 4, 171.

28. Lee, C.-C., Sui, G., Elizarov, A., Shu, C.J., Shin, Y.-S., Dooley, A.N., Huang, J., Daridon, A., Wyatt, P., Stout, D., Kolb, H.C., Witte, O.N., Satyamurthy, N., Heath, J.R., Phelps, M.E., Quake, S.R., and Tseng, H.-R. (2005) Science, 310, 1793.

29. Dummann, G., Quitmann, U., Gröschel, L., Agar, D.W., Wörz, O., and Morgenschweis, K. (2002) Catalysis Today, Special edition – 4th International Symposium on Catalysis in Multiphase Reactors, CAMURE IV, vols.78–79, p. 433.

30. Pennemann, H., Hessel, V., Löwe, H., Forster, S., and Kinkel, J. (2005) Org. Process Res. Dev., 9, 188.

31. Lilly, Eli., Kopach, M., Murray, M., Braden, V., Kobierski, M., and Williams, O. (2009) Org. Process Res. Dev., 13, 152.

32. Wörz, O., Jäckel, K.-P., Richter, T., and Wolf, A. (2000) Chem. Ing. Tech., 72, 460.

33. Wörz, O., Jäckel, K.-P., Richter, T., and Wolf, A. (2001) Chem. Eng. Tech., 24, 138.

34. Wille, G. (2007) Industrial production of chemicals in microstructured reactors. Sigma-Aldrich Workshop, Buchs.

35. Kopach, M., Murray, M., Braden, T., Kobierski, M., and Williams, O. (2009) Org. Process Res. Dev., 13, 152–160.

36. Kim, J., Park, J.-K., and Kwak, B.-S. (2005) 4th Asia-Pacific Chemical Reaction Engineering Symposium, APCRE05, Gyeongju, Korea, p. 441.

37. Choe, J., Song, K.-H., and Kwon, Y. (2005) 4th Asia-Pacific Chemical Reaction Engineering Symposium, APCRE05, Gyeongju, Korea, p. 435.

38. Fernandez-Suarez, M., Wong, S.Y.F., and Warrington, B.H. (2002) Lab Chip, 2, 170.

39. Corona, J.A., Davis, R.D., Kedia, S.B., and Mitchell, M.B. (2010) Org. Process Res. Dev., 14 (3), 712–715.

40. Schwalbe, T., Autze, V., and Wille, G. (2002) Chimia, 56, 636.

41. Taghavi-Moghadam, S., Kleemann, A., and Overbeck, S. (2000) VDE World Microtechnologies Congress, MICRO.tec 2000, vol.2, VDE Verlag, Berlin, p. 489.

42. Zhang, X., Stefanick, S., and Villani, F.J. (2004) Org. Process Res. Dev., 455.

43. Sigma-Aldrich, Microreactor Technology at Sigma-Aldrich, http://www.sigmaaldrich.com/technical-documents/articles/chemfiles/microreactor-technology.html (last accessed August 2012).

44. Muñoz, J.M., Alcázar, J., de la Hoz, A., and Díaz-Ortiz, A. (2011) Tetrahedron Lett., 52 (46), 6058–6060.

45. Muñoz, J.M., Alcázar, J., de la Hoz, A., and Díaz-Ortiz, A. (2012) Eur. J. Org. Chem., (2), 260–263.

46. Roberge, D.M. (2007) AIChE Spring National Meeting, Houston, TX, published on CD.

47. Bogdan, A.R. and Sach, N.W. (2009) Adv. Synth. Catal., 351, 849.

48. LaPorte, T.L., Hamedi, M., DePue, J.S., Shen, L., Watson, D., and Hsieh, D. (2008) Org. Process Res. Dev., 12, 956–966.

49. Linden, J.M.J., Hilberink, P., Kronenburg, C., and Kempermann, G. (2008) Org. Process Res. Dev., 12, 911.

50. Pennemann, H., Hessel, V., and Löwe, H. (2004) Chem. Eng. Sci., 59, 4789.

51. Vanden Bussche, K.M. (2005) Symposium on Modeling of Complex Processes, Austin, TX.

52. Veser, G. (2001) Chem. Eng. Sci., 56, 1265.

53. Brownstein, A. (1999) Eur. Chem. News, 71, 36.

54. Huckins, H.A. (1995) US Patent 5,641,467 (to Princeton Advanced Technology, Inc., Hilton Head, SC, USA).

55. Lawal, A., Voloshin, Y., and Dada, D. (2007) AIChE Spring National Meeting, Houston, TX, published on CD.

56. Comyns, A.E. (2011) Focus Catal., 2011 (2), p. 1.

57. Voloshin, Y., Manganaro, J., and Lawal, A. (2008) Ind. Eng. Chem. Res., 47, 8119–8125.

58. Hessel, V., Hofmann, C., Löwe, H., Meudt, A., Scherer, S., Schönfeld, F., and Werner, B. (2004) Org. Process Res. Dev., 8, 511.

59. Ducry, L. and Roberge, D.M. (2008) Org. Process Res. Dev., 12, 163.

60. Barthe, P., Guermeur, C., Lobet, O., Moreno, M., Woehl, P., Roberge, D.M., Bieler, N., and Zimmermann, B. (2008) Chem. Eng. Technol., 31 (8), 1146–1154.

61. Roberge, D.M., Bieler, N., Mathier, M., Eyholzer, M., Zimmermann, B., Barthe, P., Guermeur, C., Lobet, O., Moreno, M., and Woehl, P. (2008) Chem. Eng. Technol., 31 (8), 1155–1161.

62. Kockmann, N. and Roberge, D.M. (2011) Chem. Eng. Process.: Process Intensification, 50 (10), 1017–1026.

63. Kockmann, N. and Roberge, D.M. (2009) Chem. Eng. Technol., 32 (11), 1682–1694.

64. Roberge, D.M., Bieler, N., and Thalmann, M. (2006) PharmaChem, 14.

65. Roberge, D.M., Ducry, L., Bieler, N., Cretton, P., and Zimmermann, B. (2005) Chem. Eng. Technol., 28, 318.

66. Roberge, D.M., Zimmermann, B., Rainone, F., Gottsponer, M., Eyholzer, M., and Kockmann F N. (2008) Org. Process Res. Dev., 12, 905.

67. Hasebe, S. (2007) MST News, 1, 10.

68. Iwasaki, T., Kawano, N., and Yoshida, J. (2006) Org. Process Res. Dev., 10, 1126.

69. Iwasaki, T. and Yoshida, J.-I. (2005) Macromolecules, 38, 1159.

70. Wakami, H. and Yoshida, J.-I. (2006) Org. Process Res. Dev., 9, 787.

71. Yoshida, J.-I. and Okamoto, H. (2006) in Micro Process Engineering – Fundamentals, Devices, Fabrication, and Applications, Advanced Micro & Nanosystems, vol.5 (eds N. Kockmann, O.von Brand, G.K. Fedder, C. Hierold, J.G. Korvink, and O. Tabata), Wiley-VCH Verlag GmbH, Weinheim, Germany.

72. Nagaki, A., Tomida, Y., Usutani, H., Kim, H., Takabayashi, N., Nokami, T., Okamoto, H., and Yoshida, J.-I. (2007) Chem. Asian J., 2, 1513.

73. Kawaguchi, T., Miyata, H., Ataka, K., Mae, K., and Yoshida, J.-I. (2005) Angew. Chem., Int. Ed., 44, 2413.

74. Maeta, H., Sato, T., Nagasawa, H., and Mae, K. (2006) AIChE Spring National Meeting, Orlando, FL, published on CD.

75. Asai, T., Takata, A., Nagaki, A., and Yoshida, J.-I. (2012) ChemSusChem, 5 (2), 339–350.

76. Nagaki, A., Kenmoku, A., Moriwaki, Y., Hayashi, A., and Yoshida, J. (2010) Angew. Chem., Int. Ed., 49, 7543–7547.

77. Chambers, R.D., Fox, M.A., Holling, D., Nakano, T., Okazoe, T., and Sandford, G. (2005) Lab Chip, 5, 191.

78. Negi, D.S., Köppling, L., Lovis, K., Abdallah, R., Geisler, J., and Budde, U. (2008) Org. Process Res. Dev., 12 (2), 345–348.

79. Mullin, R. (2007) Chem. Eng. News, 8, 10.

80. MIT, Continuous drug manufacturing offers speed, lower costs, http://web.mit.edu/newsoffice/2012/manufacturing-pharmaceuticals-0312.html (last accessed August 2012).

81. McMullen, J.P., Stone, M.T., Buchwald, S.L., and Jensen, K.F. (2010) Angew. Chem., Int. Ed., 49 (39), 7076–7080.

82. Deshpande, K., Meldon, J.H., Schmidt, M.A., and Jensen, K.F. (2010) J. Microelectromech. Syst., 19, 2.

83. Markowz, G., Schirrmeister, S., Albrecht, J., Becker, F., Schütte, R., Caspary, K.J., and Klemm, E. (2005) Chem. Eng. Technol., 28, 459.

84. Thayer, A.M. (2005) Chem. Eng. News, 83, 43.

85. Junkers, M., ChemFiles, vol. 9, article 4.

86. Thayer, A.M. (2009) Chem. Eng. News, 87, 17–19.

87. Dencic, I., Meuldijk, J., de Croon, M., and Hessel, V. (2012) ChemSusChem, 5, 2–16.

88. Velocys Inc. (2010) GTL Demonstration at Petrobras, Financial Announcement, Velocys Inc., http://www.velocys.com.

89. KIT, www.fzk.de/fzk/idcplg?IdcService = FZK&node=2374&document=ID_050927 (last accessed 2010).

90. Hessel, V., Serra, C., Löwe, H., and Hadziioannou, G. (2005) Chem. Ing. Tech., 77, 1693.

91. Wille, C., Autze, V., Kim, H., Nickel, U., Oberbeck, S., Schwalbe, T., and Unverdorben, L. (2002) 6th International Conference on Microreaction Technology, IMRET 6, AIChE Pub. No. 164, New Orleans, LA, USA, p. 7.

92. Hessel, V., Hardt, S., and Löwe, H. (2004) Chemical Micro Process Engineering – Fundamentals, Modelling and Reactions, Wiley-VCH Verlag GmbH, Weinheim.

93. Reintjens, R., Dielemans, H., Thathagar, M., and Konings, J. (2012) Continuous production and reaction of a diazo compound. WO2012059485 (A2).

94. Braune, S., Pöchlauer, P., Reintjens, R., Steinhofer, S., Winter, M., Lobet, O., Guidat, R., Woehl, P., and Guermeur, C. (2009) Chem. Today, 27 (1), 26–29.

95. Kirschneck, D. and Tekautz, G. (2007) Chem. Eng. Technol., 30, 305.

96. Krummradt, H., Kopp, U., and Stoldt, J. (2000) in Microreaction Technology: 3rd International Conference on Microreaction Technology, Proceedings of IMRET 3 (ed. W. Ehrfeld), Springer, Berlin, 181 pp.