Organic Chemistry: Concepts and Applications - Headley Allan D. 2020

Preface

About This Book

This book is written from the students' perspective. Addressing the questions that students of organic chemistry typically have, the errors they typically make, along with some fundamental misconceptions that they typically formulate, are all the focus of this textbook. A major difference between this textbook and the majority of other textbooks is with the presentation of the information. The objective of this textbook is to develop the student's ability to think critically and creatively and equally important to improve the problem-solving skills of students. The content information is presented in such a way to assist students develop these skills. These are skills critically needed for students of science as they prepare for today's workforce. This approach also gives students the assurance that their opinions and thoughts are valued. As a result, students will become confident as they master the subject material. With this approach, students will quickly realize that it is in their best interest to develop these skills instead of relying on memorization as they approach this course and other science courses. The development of these skills will eventually prepare students to become better scientists. The problems in each chapter and at the end-of-chapter problems are designed to get students to solve problems by using their critical thinking skills.

For the majority of textbooks, the vast amount of organic chemistry information is dealt with primarily by categorizing the information into functional group categories. Thus, each of the approximately 20 chapters of a typical organic chemistry textbook is basically an exhaustive study of compounds with the different functional groups found in organic chemistry. This approach does not lend itself to aid students understand and master the vast content information of organic chemistry; this approach only presents large categories of information for students to handle. As a result, some students tend to rely on memorization instead of developing a scientific approach to handle all the information presented. In this textbook, the vast amount of organic chemistry information is not presented by functional group categories, but instead by reaction types; this approach presents much fewer categories of information for students to handle. In this textbook, the content information is divided into eight general categories based on reaction types, and not functional groups. An overview of the eight reaction types that are covered in the textbook is covered in Chapter 6. Since the majority of these types of reactions are the basic reactions covered in general chemistry, this approach provides a much better method to bridge the gap between general chemistry and organic chemistry. For example, there is a chapter that covers oxidation, a concept covered in general chemistry, but in this textbook, the concept of oxidation is applied to organic molecules that have different functional groups. Thus, after students have learned the concept of oxidation, they will be better prepared to apply that concept to a wide variety of organic molecules. The first part of the textbook covers relevant concepts of chemistry and the later sections deal with the applications of the concepts learned to the reactions of a wide cross section of molecules with different functional groups, hence the title of the textbook — Organic Chemistry: Concepts and Applications.

The first chapter covers the description of the atom and molecules; the next two chapters give a basic description of functional groups and the nomenclature of organic molecules so that students can readily recognize different types of molecules and learn the language of organic chemistry encountered in later chapters. The philosophy is that once students are able to recognize different functional groups, they will be better able to predict and communicate the various outcomes of different reactions encountered in organic chemistry. As a result, students will be able to apply their creative thinking skills to solve various problems encountered in this course. Since students are taught early in the textbook how to recognize the different reaction types, they will not only recognize the connection with general chemistry and organic chemistry but also how to apply the knowledge gained from general chemistry to new concepts that will be learned in organic chemistry.

Another aspect that this textbook covers is the importance and relevance of organic chemistry to our environment, the pharmaceutical and chemical industries, and biological and physical sciences. For example, in the study of the properties and the types of reactions that alkanes undergo, students will recognize the relevance of using different types of reactions to convert fossil and petroleum products into important compounds, such as polymers, pharmaceutical products, everyday household chemicals, insecticides, and herbicides. Also, the importance and significance of reactive intermediates including radicals are discussed. As a result, throughout the textbook, there are various “Did you Know?” sections. In these sections, students are shown the importance and the relevance of the content material being covered to the environment; often times, this is information that students may not have realized or know. There is a supplemental package that accompanies this text that includes multiple-choice questions similar to those of most national standardized tests and there are answers and detailed explanations for the questions. This supplemental package is included since most students who take organic chemistry eventually take an aptitude test for professional schools, including the Medical College Admissions Test (MCAT) for medical school, Dental Aptitude Test (DAT) for dental school, Pharmacy College Admission Test (PCAT) for pharmacy school, or the GRE subject test for most graduate programs. Organic chemistry makes up a large percentage of these exams since students' critical, analytical, and creative skills are needed to be successful in organic chemistry and these programs.

In summary, this textbook offers a new approach to not only teach organic chemistry but also as a guide to assist students to become better scientists by developing their critical, analytical, and creative thinking skills. These skills will prepare students for today's job market, which relies heavily on the creative application of knowledge.

To the Student of Organic Chemistry

Chemistry is all around us and plays a very important role in just about every aspect of our everyday lives. Our society benefits from chemistry, especially organic chemistry, in many ways. A large percentage of just about everything around us is derived through a process that involves chemistry. For example, a large percentage of the clothes that we wear are synthetic polymers; the plastic containers for milk, water, and other liquids are made from polymers, which are different types of polymers from the kind that are used to make some of the clothes that we wear. So, it is important to understand and learn how chemistry can be used to benefit our everyday lives, and how chemists can utilize chemistry to improve the quality of our lives and solve various problems. In order to succeed in this course, you must have a positive attitude about chemistry. The same is true for any of your other courses and anything that you want to succeed at in life. Can you imagine an athlete who wants to be the best at his or her sport keeps saying that they just do not like the game or thinks that the game that they are playing is extremely difficult and that they will never master that particular game! I am of the impression that such an individual will not be very successful at that particular sport. As a result, this cannot be the approach to succeed at mastering something that needs to be mastered. A very positive approach must be taken in order to be successful in organic chemistry. One way of achieving the goal of benefiting the maximum from organic chemistry is to become involved in chemistry; get to know, understand, and appreciate its benefits to society. This approach will require constant and persistent work on this subject. Develop a schedule for study and try to study consistently for at least five to six hours per week. Depending on your background in chemistry, some students may require a bit more time. Most people who succeed at a particular discipline have to put aside a large percentage of time to practice and perfect their skills. Each member of the football team must practice regularly so that the team can be the best in the conference and the nation. We can learn something from their approach to achieve success — they set aside time to practice regularly. Whether the discipline is baseball, football, cheerleading, or chemistry, success appears to come from disciplined and consistent hard work. Like anything that we do in life that we are successful at, we must dedicate time in order to achieve perfection. An important aspect of time dedicated toward mastering organic chemistry is to attend classes and taking good notes. Just hearing the subject being discussed goes a long way. As you start to master the subject, you will require less time to understand the different topics of organic chemistry and you will be able to spend more time analyzing and applying the concepts learned.

There are strategies that have been proven to be useful in order to be successful in organic chemistry. It may sound simple, but the first strategy to succeed in organic chemistry is to attend lectures and it is important to attend each and every lecture. Read ahead of the lecture material that will be discussed. Sometimes, you may not fully understand the materials that you read, but the main point is to get familiar with the material so that when you get to lecture, you will have already seen some of the materials and understanding it then will be much easier. Practice, practice, practice! Work the problems at the end of the chapter and those in the chapter — do not just work problems to get the answers that are in the solutions manual, but spend most of your time understanding the concept of each problem. The problems in this textbook are designed to apply your understanding of specific concepts to solve a wide variety of problems. The problems are not designed to determine how well you have memorized the information and can reproduce it. Remember that the solutions that are found in the solutions manual are not always the only solutions; there are typically other reasonable possibilities. If your answer is different from the one shown in the solutions manual, you should use your critical thinking skills to determine why the difference before coming to a final conclusion. In working your problems, you should be able to formulate a very similar question by changing a few words or structures of molecules of the problem to get another problem that can test the same concept. You will have to think through possible solutions. It is best to work a few problems and understand the concepts involved than to work lots of problems and not fully understand the concepts or principles. In solving problems, make sure that you “work” through the problems and not just look at the problem and then look at the solutions manual for the “answer.” It is always a good practice to go over your graded exams. Some instructors offer regrades that allows students to challenge possible solutions and grading errors. Take advantage of this opportunity since it serves to reinforce your thinking ability and confidence, plus it may get you a few extra points on an exam!

It is impossible to learn chemistry and master the subject without getting questions. Scientists are curious individuals and are constantly seeking explanations for different observations. A good test of how well you are doing in this course is to determine how many questions come to you as the different topics are covered. If you read the textbook and attend lectures and have not developed a question or become curious about something, such as why does this happen, etc., you should try to carry out a deeper analysis of the topic that you are studying. The type of questions that should cross your mind should be of the curious type, the “what if” question is one that demonstrates curiosity. The next aspect of being a good scientist is to get your questions answered. Seek to get answers to your questions by first thinking through the concepts instead of just checking the solutions manual for the answers, or just getting an answer from someone without a discussion. With this approach, you have not utilized your critical and analytical thinking skills by just getting an answer. A major aspect of our work as scientists is centered on our ability to critically analyze information and formulate reasonable explanations. If you still need to get additional explanations for your questions, start seeking individuals who can assist. Most professors have posted office hours — use them. Some schools have help sessions or other forms of tutorials — capitalize on these opportunities. Some universities are very fortunate to have graduate students or tutorial study groups; these are tremendous resources to assist in getting your questions answered. Some students find it very helpful to form study groups. This approach is very helpful since you will learn from your peers. Peer-led team learning environments are typically found in the workplace, the team approach is very useful in finding solutions to various problems. Remember that it is extremely difficult for you to succeed in this course by just working alone; this course is also intended to assist students to become good at working in teams. Molecular models and molecular modeling computer programs will play an important role in helping you to better visualize and understand most of the concepts that will be discussed in this course. There are lots of computer programs that will assist in the visualization of the actual three-dimensional structures of molecules; some give good descriptions of the arrangements of electrons about atoms and molecules. Also, become very familiar with the periodic table and the meaning of each number on the table and the approximate location of each atom on the periodic table. This knowledge will become very useful in analyzing various properties of atoms and molecules.

There are many benefits to taking a course such as organic chemistry. Most of the principles and reactions that will be discussed in this course may not be remembered in years to come, but students will develop a more scientific mind from the various exercises, including the exams and discussions encountered throughout the course. Critical thinking, combined with a scientific approach developed in this course, is the key to being successful at your chosen profession and will be invaluable as you continue to prepare for your profession. From this course, you will not only gain knowledge of the basic principles of organic chemistry, but another major benefit, which is of equal importance, is the development and constant utilization of the critical and analytical thinking skills, which will be invaluable to assist you in solving work and life's everyday challenges. Most science students are required to take organic chemistry in order to assist in the development of better critical thinking skills. You will discover that if you take the scientific approach to learn organic chemistry, you will not have to memorize your way through this course. Instead, you will have the ability to apply the concepts learned to solve various problems and be better prepared to analyze and evaluate new information, and eventually be able to create new knowledge.

In summary, the ultimate goal of a course of this type is for students to be able to evaluate information learned and eventually to be able to generate new knowledge to benefit the society. Today's society is often described as a knowledge-based society because of the need to have creative thinkers find innovative avenues to apply new knowledge learned. You will need to be disciplined, be ready to work hard and consistently, and not be afraid to think. This approach keeps research, innovation, and new discoveries alive. At the end of the semester, you should reflect on your accomplishments over the semester and determine if you have made any change in the way you think or approach problems and if you have become a better scientist. If you have, then you have had a very successful semester of organic chemistry!

To the Instructor

We have all heard the comment from some students of organic chemistry that there is a major disconnect between their general chemistry course and organic chemistry. One of the goals of this textbook is to address that disconnect. In this book, concepts that are learned in general chemistry are constantly being reinforced and are used as the foundation for students to gain a better understanding of concepts that are discussed in organic chemistry. Fundamental concepts are introduced early so that students can get a clear understanding of a topic that is being introduced. This approach is important so that when specific topics are re-introduced throughout the textbook, students will be comfortable in applying the concepts learned to solve different problems.

In this book, students will find only relevant material throughout the text. Some textbooks try to introduce very advanced topics, and students at this level do not have a deep enough understanding of concepts involved to fully appreciate such advanced topics. As a result, students find such topics very confusing and often times serve as a distraction from the important topic being discussed. Information in this textbook is designed to stimulate students' critical thinking skills and to get students to apply these skills to find possible solutions to various problems. It is also designed to get students to fully develop the scientific method and to reach conclusions based on the scientific process. In this textbook, each concept is presented in a timely manner so that students are constantly building on their knowledge — most on the principles learned in general chemistry. Problems are carefully designed so that students have the opportunity to apply their critical thinking skills to determine possible solutions to problems encountered. As a result, there is no unique solution to most problems, but a discussion is given for each problem with possible solutions in the solutions manual. This approach makes students aware that there are sometimes not just one unique answer to some questions. This approach also serves to build students' confidence in making decisions about possible solutions. In this textbook, whenever a new topic is introduced, it is done so by reintroducing and building on the fundamental principles learned in general chemistry. As a result, this is a perfect textbook to bridge the gap between the courses of general chemistry and organic chemistry.

About the Companion Website

This book is accompanied by a companion website:

Image

www.wiley.com/go/Headley_OrganicChemistry

The website includes:

· Solution manual

· MCQs