The Calculus Primer (2011)
Answers to Problems
Ex. 1—1:
1. −1, 8, 23, 44.
2. The positive integers and zero.
3. 7, 11, 15, 19, ··· ; 1, 2, 3, ··· ; 7, 11, 15, 19, · · · .
4. u = 0, 1, 2, ··· 9; t = 0, 1, 2, ··· 9; h = 1, 2, 3, ··· 9.
7. Functions: a, c, e, g, i, k, o, p, q, r; non-functions: b, d, f, h, j, l, m, n, s, t, u.
Ex. 1—2:
1. a0x5 + a1x4 + a2x3 + a3x2 + a4x5 + a5
2. a0x9 + a2x7 + a4x5 + a6x3 + a8x
3. f(m) = am2 − bm + c; f(5) = 25a − 5b + c
4. F(−l) = −7; F(0) = −6
5. f(x + h) = 2x2 + (4h + 5)x + (2h2 + 5h − 3); absolute term = 2h2 + 5h − 3
7. x3 − x2 + 3x − 3; x3 − 3x2h + 3xh2 − h3 − 4x2 + 8xh − 4h2 + 8x − 8h − 8
11. Range of y: all y’s − 6.
12. (a) {2, 5, 8, 11, 14, 17, 20}
(b) {0, 2, 8, 18, 32, 50, 72}
(c) {0, 3, 6, 9, 12, 15, 18}
Ex. 1—3:
1. 9
2. ∞
3. 0
4. ∞
5. ∞
6. 2
7. −6
8. ∞
9.
10. −2
11.
12. 2
Ex. 2—1:
1. 2
2. −2x
3. 4x + 3
4. 20x
5. 2x − 1
6. 6x − 2
7. 6x2
8. 3x2 − 2
9. 2x − 1
10. 12x + 1
11. 2
Ex. 2—2:
1. 12
2. 8
3. 5
4. −8
5. 6
6. 33
7. 12
8.
Ex. 3—1:
Ex. 3—2:
1. 2x − 1
2. 9x2 + 8x + 3
3. 8x3 − 9x2 − 2x + 3
4. 6x2(x3 − 1)
5. 6x(x2 + l)2
6. 4t3 − 3t2 + 4t − 2
7. 48x3 + 15x2 − 4x
8. 3x2 − 7
9. 3(2t − 3)(t2 − 3t + 4)2
10. (x + 2)(x + 3)2(5x + 12)
Ex. 3—3:
Ex. 3—4:
Ex. 3—5:
Ex. 3—6:
Ex. 4—1:
1. 20.6π sq. in./in.
2. 576π cu. in./in.
3. 9 units
4. 48 cal./amp.
5. − 1 units
6. 2997 cu. ft. per sec./ft.
7. −494 B.T.U. per unit concentration
8. 16,000 H.P.; 2400 H.P./knot
9. 48 B.T.U./degree
Ex. 4—2:
1. (a) 20x3 + 18x(b) 100 − 40t3(c) 40x−6(d) 8πr
3. (a) 360x2 + 1200x−6 (b) 120t
4. (a) s = 14, v = 15, a = 12
(b) s = 5, v = 0, a = −10
(c) s = −4, v = −6, a = 0
5. (a) 322 ft./sec.;(b) 35.9 ft./sec.(c) 32.2 ft./sec./sec.
(d) 257.6 ft.
7. (a) mi./min./min.;(b) 2 miles
8. (a) 1760 ft./min./min.;(b) 3520 ft.
9. (a) v = v1 − 32.2t; a = −32.2
(b) v = 103.4 ft./sec. upward; a = 32.2 ft./sec./sec. downward
(c) v = 186.4 ft./sec. downward; a = 32.2 ft./sec./sec. downward
10. (a) 717 ft./sec.;(b) 37.2 + sec. (approx.)
Ex. 4—3:
1. x = 2 gives min. y = −4
2. x = −3 gives min. y = −1
3. x = +2 gives min. y = −16; x = −2 gives max. y = +16
4. x = 0 gives max. y = 15; x = +3 gives min. y = −66; x = −3 gives min. y = −66
5. Neither max. nor min.
6. 20; 20
7.
8. 1
Ex. 4—4:
Ex. 4—5:
2. a = (4t + 8) ft./sec./sec.; 28 ft./sec./sec.
3. Max., x = −2; min., x = +4
4. r = 3
5. v = 0; a = −20 ft./sec./sec.
6. Max., x = −1; min., x = +5/3
7. Max., x = 0; min., x = +1 and x = −1
8. 7 mi./hr./hr.
9. Length = 30 in.; circumference = 60 in.
10. Square; area = 2k2
Ex. 5—1:
Ex. 5—2:
1. 4 log k(k4x)
2. 2x (log a)
3. kekx
Ex. 5—3:
1. (x + 1)(xx) + log x (xx+1)
2. x(x2 + 1)x−1 + [log (x2 + 1)](x2 + 1)x
3. −x3x(3 + log x3)
4. (l + 2 log x)
Ex. 5—4:
Ex. 5—5:
1. 3 cos 3x
2. − 5a sin 5ax
3. sin x(2 cos2 x − sin2 x)
4. −2a sin 2θ
5. b cos (a + bx)
6. etan x·sec2 x
7. −2 tan x
8. (sin x)x·[(log sin x + x cot x)]
9. xcos x−1·[cos x − x log x sin x] 10. ex(cot x + log sin x)
10. ex(cotx + log sinx)
Ex. 5—6:
Ex. 5—7:
Ex. 5—8:
Ex. 6—1:
Ex. 6—2:
1. 3
2. Tangent, 4x + y = 0; normal, 4y − x = 34
3. Subtangent, 2x; subnormal, 2p
4. 3x + 4y = 25;
5. y = x
6. nk
8. Intercept on x-axis = 2x; intercept on y-axis = 2y; area = (2x1)(2y1) = 2x1y1 = a2.
Ex. 6—3:
1. (2, − 114); (−3,−294)
2. None
4. (0,0)
5. None
6. (0,0)
7. None
9. (a,b)
10. (−1,0)
Ex. 6—5:
Ex. 6—6:
Ex. 6—7:
Ex. 7—1:
1. dy = (3x2 + 10x) dx
2. dy = 15(5x + 2)2 dx
3. dy = x(x2 − 1)−½ dx
4. dy = (ktetx) dx
Ex. 7—2:
1. .72 sq. cm.; 3.6 cu. cm.
2. .04π in.; .2π sq. in.
3. 1.60π sq. in.; 8π cu. in.
4. .4π cu. cm.
5. 17.059
6. 3.917
7. .025 cm.
Ex. 7—3:
Ex. 8—1:
Ex. 8—2:
Ex. 8—3:
1. α = 2, β = 3
2. β = β = log 2 −5
3. α = β = 0
4. α = 5, β = −2
5. β = , β = 0
Ex. 8—4:
Ex. 9—1:
1. −1
2. n
3.
4. 0
5.
6. 1
7.
8.
9. 2
10. 2
Ex. 9—2:
1. 0
2. 0
3. 0
4. 1
5. 0
6. 0
7. 0
8. ∞
9.
10. 0
11. 0
12. 0
13. −3
14. ∞
15. −
Ex. 9—3:
1. 1
2. 1
3. 1
4. e
5. e3
6. 1
7. emn
8.
9. e
10. e
Ex. 9—4:
1. 3x + 2y − 10 = 0
2. 2y = 2x + 3
Ex. 10—1:
Ex. 10—2:
Ex. 10—4:
1. (a) 1;(b) n;(c) 0(b) dz = 2ay3x dx + 3ax2y2 dy
2. (a) dz = 2ax dx + 3by2 dy(c) dz = yxy−1 dx + xy log x dy
Ex. 11—1:
Ex. 11—2:
1. Divergent
2. Convergent
3. Divergent
4. Convergent
5. Convergent
6. Divergent
7. Divergent
8. Convergent
9. Convergent
10. Convergent
Ex. 11—3:
1. Convergent
2. No test
3. Convergent
4. Convergent
5. Convergent
6. No test
7. Divergent
8. Convergent
9. Convergent
10. Divergent
Ex. 11—4:
1. −1 < x < 1
2. −1 < x < 1
3. −1 x 1
4. −1 x < 1
5. −2 < x < 2
6. 1 > x −1
7. −1 x < 1
8. All values of x
Ex. 11—5:
1. Convergent for all values of x
2. Convergent for all values of x
3. Convergent for all values of x
4. Convergent for − 1 x < 1
5. Convergent for all values of x
6. Convergent for all values of x
Ex. 11—6:
Ex. 11— 8:
Ex. 12—1:
Ex. 12—2:
Ex. 12—3:
1. 3 log x + C
2. log x + C
3. 5 log x + C
4. 2 log x + C
5. log (2x + 3) + C
6. − log (2 − 3z) + C
7. log (x2 + 2) + C
8. log (x2 − 4) + C
9. log (z3 − 1) + C
10. log z + + C
11. y2 − log y2 + C
12. [x2 + log (x2 − 1)] + C
13. log (x3 − 1) + C
14. x3 − log (x3 + 2)2 + C
15. log (x3 − 2x + 1) + C
Ex. 12—4:
Ex. 12—5:
Ex. 12—6:
Ex. 12—7:
Ex. 13—1:
1. x sin x + cos x + C
2. x log x − x + C
3. e2x(x − ) + C
4. ex(x2 − 2x + 2) + C
5. ex (sin x + cos x) + C
6. x(log2x − 2 log x + 2) + C
7. x2 sin x + 2x cos x − 2 sin x + C
8. x4(log x − ) + C
9. θ tan θ − log sec θ + C
10. x arc tan x − log (1 + x2) + C
11. −e−x(x2 + 2x + 2) + C
12. x3(log x − ) + C
13. θ tan θ + log cos θ − θ2 + C
14. z tan z + log cos z + C
15. ex(2 sin 2x + cos 2x) + C
16. sin x (log sin x − 1) + C
17. x sin 2x − x2 cos 2x + cos 2x + C
18. x sin 2x + cos 2x + C
Ex. 13—2:
Ex. 13—3:
Ex. 13—5:
Ex. 13—6:
1. 8 log x + 4 log (x + 2) + C
2. 2 log x + log (x − 3) + C
3. 2 1og (x − 4) + 5 1og (x + 3) + C
4. 4 log (x − 5) − 3 log (x + 5) + C
5. 2 log (x − 1) − 3 log (x − 2) + C
6. log x + 2 log (x + 4) + 3 log (x − 1) + C
7. log (2x + 1) − 41og (x − 3) + C
8. 3 log x + 7 log (x + 4) − log (3x − 1) + C
Ex. 13—7:
Ex. 13—8:
Ex. 14—1:
Ex. 14—2:
1. 112
2. A = 10 ; B = 5
3. 96
4. 2
5. 27
6. A = 4; B = 12
7. 77
8. a2 (log b − log a)
9. a2/6
10. 21
Ex. 14—3:
1. 1
2.
3.
4. 1
5. e
6. No meaning
7.
8. No meaning
Ex. 14—4:
1. 8
2.
3.
4.
5.
6.
7. 4 − 2 log 2
8. 1
9. 36
10.
11. 2
12.
Ex. 14—5:
Ex. 15—1:
Ex. 15—2:
1. 12 log 3
2. 6
3. πab
4. 3πa2
5.
6.
7. a2
8.
9. πa2
10.
Ex. 15—3:
Ex. 15—4:
Ex. 16—1:
Ex. 16—2:
Ex. 16—3:
Ex. 16—4:
1. Trap. rule, 1.812; direct integration, 1.792
2. Trap. rule, 332.0; direct integration, 330.7
3. Simpson’s rule, 6554.7; direct integration, 6553.6
4. Simpson’s rule, 1.247; direct integration, 1.248
5. Trap. rule, 0.683; direct integration, 0.684
6. Simpson’s rule, 9.295; direct integration, 9.279
(Four-place logarithmic and trigonometric tables were used in the above verifications.)
Ex. 16—5: