Answers to Selected Exercises - Two-Dimensional Calculus

Two-Dimensional Calculus (2011)

Answers to Selected Exercises

Chapter one

Section 1

Image

1.1 a. Image2, 1Image

c. Image1, −1Image

e. Image2, 1Image

1.2 a. |v| = 3, α = 0

c. |v| = 2, α = Imageπ

e. |v| = Image, α = Imageπ

1.3 a. Image−5/Image , 5/Image Image

c. ImageImage , −1Image

e. Image3, 4Image

1.4 a. Image0, 0Image

c. 0

1.5 Image

c. −10

1.6 a. Imageπ

c. Imageπ

1.7 Image

1.12 a. |v| = |w|, |v| = |u|, or |u| = |w|

c. u · v = 0, u · w = 0, or v · w = 0

1.13 b. w + Imageu = Image(v + w)

1.14 a. vu, vw

c. u + Image(vu) − Imageu = Imagev

e. Imagev

1.15 a. u = vwv = u + ww = vu

c. Imagev = Image(u + w) ⇔ u = vu

1.16 ax + by = c, ax0 + by0 = ca(xx0) + b(yy0) = 0.

Imagea, bImageImagexx0, yy0Image .

1.19 Speed is 50 miles per hour; angle with direction of train is cos−1 Image ~ 37°.

1.21 130 miles per hour

1.23 The wind is from the Northwest.

1.24 The star always appears to be displaced in the direction of the earth’s motion.

1.25 Magnitude 2Image , in direction of positive y axis.

1.27 a. Equal magnitude and opposite direction.

1.28 a. Equilibrium point is on line joining the two bodies, at distance d/(1 + Image) from body of mass m1.

1.30 a. All lines perpendicular to v.

Section 2

2.1 a. x = 3t + 1, y = 2t + 1, 0 ≤ t ≤ 1

c. x = − 3t + 2, y = 3, 0 ≤ t ≤ 1

e. x = −t, y = t, 0 ≤ tImage

2.2 a. y = 2x − 5, 2 ≤ x ≤ 3

c. y = x2, 0 ≤ x ≤ 1

e. Image

2.3 y = 2x2 − 1, −1 ≤ x ≤ 1

2.5 x2/a2y2/b2 = 1

2.7 r ≠ 0

2.9 a. Image1, 2Image

c. Image2t, 4t3Image

e. [2/(1 + t2)2] Image−2t, 1 − t2

2.10 a. Image1, 2Image /Image

c. Image1, 2t2Image /(1 + 4t4)1/2

e. Image−2t, 1 − t2Image /(1 + t2)

2.11 a. 20

c. 61/27

e. 8

2.12 a. x3 − 3xy + y3 = 0

2.15 a. Yes

b. all t ≠ 0

c. y = |x|

2.16 a. Image0, 0Image ; −r Imagecos t, sin tImage = − Imagexc, ydImage ; Image0, −gImage

Section 3

3.7 c. Ex. 3.1b, c; Ex. 3.4a, b; Ex. 3.5a

3.8 a. Image

c. circles x2 + y2 = R2

3.9 a. Moved upwards 2 units

c. Moved 2 units in the positive y direction

e. Reflected in the plane x = 0

g. Contracted by a factor of 2 in the x direction

i. Reflected in the origin

3.10 a. They are the same curves, but correspond to different values of the function.

Chapter two

Section 4

4.1 a. fx = 4x3 + 6xy − 5y3, fy = 3x2 − 15xy2

c. fx = 3x2 + 6xy + 3y2, fy = 3x2 + 6xy2 + 3y2

e. fx = cos (x + y), fy = cos (x + y)

g. Image

i. fx = − y/(x2 + y2), fy = x/(x2 + y2)

k. fx = y(y2x2)/(x2 + y2)2, fy = x(x2y2)/(x2 + y2)2

m. Image

4.2 a. 1

c. 2e

4.3 a. 3(x3 + y3)

c. Image

4.4 a. fx = ex cos y = gy, fy = −ex sin y = −gx

4.9 a. 4(x2 + y2)

b. e2x

c. 0

d. 0

4.12 a. fx(0, 0) = 1, fy(0, 0) = 0

c. fx(0, 0) = 1, fy(0, 0) = 0

4.13 a. x2 + y2 ≤ 1, yx

c. x > 0, y > 0, x + y < 1

4.14 a. The ellipse x2 + 4y2 = 4

c. The ellipses x2 + 4y2 = 4 and x2 + 4y2 = 16

e. The horizontal line segments y = ±2, |x| ≤ 1 and the vertical line segments x = ±1, |y| ≤ 2

4.15 a. Ex. 4.14 a, b

b. For example, in Ex. 4.14c (2, 0) and in Ex. 4.14e (1, 0)

4.17 Ex. 4.14 c, d,f

4.18 a. Ex. 4.14 a, d, e

Section 5

5.1 a. z = 3x − 4y + 5

c. z = 2

e. 25z = 6x + 12y − 20

5.3 a. z = z0 − (z0/x0)1/2(xx0) − (z0/y0)1/2(yy0)

5.8 a. fx(x0, y0) = 2x0 sin 1/x0 − cos 1/x0, fy(x0, y0) = 2y0

b. fx(0, y0) = 0, fy(0, y0) = 2y0

5.10 a. fx = 2y(y2x2)/(x2 + y2)2, fy = 2x(x2y2)/(x2 + y2)2

Section 6

6.1 a. Image3, −7Image

c. Image3, −7Image

6.2 a. 1

c. −1

6.3 a. Image2, 0Image ; 2, Image, 0, −Image , −2, −Image , 0, Image

c. Image1, 1Image ; 1, Image, 1, 0, −1, −Image , −1, 0

6.4 a. 1; α = Imageπ

c. 1; Tα = ImageImage, ImageImage

6.5 f(x0, y0) = 2F'(Image + Image) Imagex0, y0Image

6.9 ImageImage , 2Image Image

6.12 a. (Image , 1); maximum

c. (0,0); minimum

6.14 a. (−2, 1)

c. All points on the line 2x − 3y + 1 = 0

6.17 a = Image, b = Image; r1 = −Image , r2 = Image, r3 = −Image

Section 7

7.1 a. 4 cos 2t

c. 4

e. 50t3

7.2 a. 0

c. 0

e. 0

7.3 xx(1 + log x)

7.5 Image; increasing

7.8 a. Degree 7

c. Not homogeneous

e. Degree 3

g. Degree −Image

7.10 a. Homogeneous if k = l; then, of degree k

c. Degree k − l

e. Degree 2k

7.16 a. 21.3

c. 0.975

7.17 21.30 < f(2.1, 3.2) < 21.43

7.18 a. (Sin πx)/x

c. (3x − 2x)/x

e. (2e−2 − e−x)/x

7.19 a. π

7.21 a. Image

7.25 a. dr/dt = (xdx/dt + y dy/dt)/r

Section 8

8.1 a. Image

c. Image

e. −1

8.2 a. Image

c. Image

8.4 a. Image

c. Image

8.5 a.b4/a2y3

c. (ey − 1)(ey + ex)/(1 − ex)2

8.8 In Ex. 6.5, level curves are circles about the origin.

8.9 Level curves are:

a. x2 + (y − 1)2 = 1

c. x2 + y2 = 2

8.11 a. f = 2Image x, −yImage , g = Imagey, xImage ; fg

8.12 a. fxgx + fygy = 0

8.14 a. fy = 0; cannot solve in the form y = g(x)

c. fy = 0; can solve as y = g(x), but g(x) not differentiable at x = 0

8.16 a. Cusp at the origin

c. Curve consists of the origin and the circle of radius 1 about the origin

e. “Level curve” has no points on it

8.18 a. If f(t, φ) = φktImage sin φ, then fφ = 1 − φ cos φ > 0 since Image < 1

c. (x, y) = (a, 0) ⇔ cos φ = 1; (x, y) = (−a, 0) ⇔ cos φ = −1

d. Image

Section 9

9.1 a. Image, −Image

c. 4

e. 1

9.2 (0, −2)

9.4 2 radians

9.6 a. (3, 4)

c. Point on the line 3x + 4y = 25 nearest the origin

9.8 a. Pairs of straight lines parallel to the given one

9.10 a. Pairs of lines, x + y = ±c

c. 4; when x + y = 0

e. No

9.11 a. f(x, y) = π: the segment L; f(x, y) = 0: the y axis except for L; f(x, y) = c, 0 < c < π: a pair of circular arcs through the endpoints of L

b. (Image , 0)

9.12 a. 1

c. (0, 0)

Section 10

10.1 a. 3, 1

c. 3, −1

e. −1, −5

g. Image, −Image

i. (Image − 1)/2, (−Image − 1)/2

k. (5 + 3Image )/2, (5 − 3Image )/2

10.3 a. max (1/Image , 1/Image ), (−1/Image , −1/Image );

min (1/Image , −1/Image ), (−1/Image , 1/Image )

c. max (1/Image , −1/Image ), (−1/Image , 1/Image );

min (1/Image , 1/Image ), (−1/Image , −1/Image )

10.5 a. III

c. I

e. V

10.6 Image

10.8 a. a2 − (λ1 + λ2)a + λ1λ2 + b2 = 0

10.10 a. λ2 = 0 and λ1 + λ2 = a + cλ1 = a + c

10.11 a. λ2 = a + c

c. Image

10.14 A = a cos2 θ + 2b cos θ sin θ + c sin2 θ

B = (ca) cos θ sin θ + b(cos2 θ − sin2 θ

C = a sin2 θ − 2b sin θ cos θ + c cos2 θ

10.18 a. 3X2Y2

c. ImageX2 + ImageY2

e. ImageX2ImageY2

10.19 a. Ellipse; Imageπ

c. Hyperbola

e. Parallel straight lines

10.20 a. Ellipse if k > 0; point if k = 0; no locus if k < 0

c. Pair of parallel straight lines if k > 0; single line if k = 0; no locus if k < 0

e. Hyperbola if k > 0 or k < 0; pair of intersecting lines if k = 0

10.22 1, Image

10.23 a. They are reciprocals.

10.27 2 − Image

10.29 a. Image

Section 11

11.1 a. fxx = 30x4 − 60x2y2, fxy = −40x3y + 15y4, fyy = −10x4 + 60xy3

c. Image

e. fxx = −fxy = fyy = 20(xy)3

11.2 a. fxx = −fyy = 0

c. fxx = −fyy = 2(x3 − 3xy2)/(x2 + y2)3

11.8 a. fxx = 2g'(x2 + y2) +4x2g″(x2 + y2), fxy = 4xyg″″(x2 + y2),

fyy = 2g'(x2 + y2) + 4y2g″(x2 + y2)

11.11 a. fxxx = ex sin y, fxxy = ex cos y, fxyy = −ex sin y, fyyy = −ex cos y

c.ex sin y

11.12 a. fxxxx = y4exy, fxxyy = (2 + 4xy + x2y2)exy, fxyyy = (3x2 + x3y)exy

c. (kyk−1 + xyk)exy

e. 0, if kImage; k! if k = Image

11.13 a. 2(3 cos2 α − 8 cos α sin α + 2 sin2 α)

c. α = Imageπ

11.15 a. 11/2

11.16 12, 2

11.17 xfx + yfy + x′2fxx + 2xyfxy + y2fyy

11.19 a. rxx = y2/r3, rxy = −xy/r3, ryy = x2/y3

c. Positive semidefinite

11.20 c. Upper hemisphere; all curves are concave downward

11.21 b. Image

11.22 Image

11.26 a. i(i − 1) ... (ik + 1)cxi−kyj, if k ≤ i; 0 if k > i

c. k!Image ! if k = i, Image = j; 0 otherwise

Section 12

12.1 a. (0, −1): saddle point; (0,3): local minimum

c. (0, 3), (−4, −3): saddle points; (0, −3): local minimum; (−4, 3): local maximum

12.2 a. See Ex. 6.15

c. If AC − B2 > 0, a local maximum if A < 0 and a local minimum if A < 0; if ACB2 < 0, a saddle point

e. A straight line

12.3 a. (0, 0): local minimum

c. (0, 0): neither

e. All points on the lines y = x and y = −x: local minimum

12.6 a, c. Local minimum

e. Neither

12.7 a. Image

c. Image

12.8 a. f(x, y) = −11 + 6(x − 1) + 3(y + 2) + 2(x − 1)2 −(x − 1)(y + 2)

c. f(x, y) = −6 + 3(x − 1) + 5y + 3(x − 1)2 + 3(x − 1)y

c. Image

e. f(x, y) = 0 + R(x, y)

12.9 a. Image

c. Image

where 2m + 1 is the largest odd integer which does not exceed n

e. Image

12.10 a. z = 51 − 6x − 8y; crosses

12.16 Cube

12.18 10 × 10 × 20 inches

12.20 The absolute maxima and absolute minima are respectively:

a. Image; −Image

c. (3 + Image)/2; 0

e. 9; 0

g. 4; −3

i. 1; −1

k. 2; 4/e3

12.21 b. Image

Chapter three

Section 13

13.1 a. Uniform stretching by a factor of 3

c. Reflection in the origin (or rotation through 180°)

e. Horizontal stretching by factor of 2 and vertical stretching by factor of 3, followed by reflection in the horizontal axis

g. “Shearing” motion

t. Double folding over

k. Distortion in vertical direction

m. Map of plane onto square

13.2 a. R = 2r, φ = θ

c. R = r, φ = −θ

e. R = rImage , φ = θ + Imageπ

g. R = r, φ = Imageπθ

13.4 a. x = Imageu, y = Imageν

c. x = u − 1, y = u + ν − 1

e. x = Image(2u + ν)1/3, y = − Image(2uv)1/5

13.5 a. Bijective

c. Surjective

e. Injective

g. None

i. None

13.6 a. The line y = x

c. The x and y axes

13.7 a. x = 0

c. y = (Image − 1)x and y = −(Image + 1)x

13.8 a. x2 + y2 = R2/2

c. x2/4R2 + y2/9R2 = 1

e. (x + 2)2 + (y − 3)2 = R2

g. x2 + y2 = R

13.9 a. The x and y axes

c. A rectangular hyperbola whose asymptotes are the x and y axes, lying in the first and third quadrants if d > 0 and in the second and fourth quadrants if d < 0.

e. They start with the lines y = ±x and move outward through a family of hyperbolas.

13.10 a. R = ex, φ = y

c. It moves counterclockwise around the circle u2 + v2 = e2c

e. The positive v axis

g. The positive u axis

i. The image ray rotates about the origin in the counterclockwise direction

13.11 a. (1, 1)

c. The line y = 1, for example

13.13 a. S is upper half-plane: v ≥ 0

c. S is fourth quadrant: u > 0, v < 0; F−1: x = log u, y = log(−v)

e. S is square −π/2 < u < π/2, − π/2 < v π/2; F−1: x = tan u, y = tan v

g. S is right half of parabola: v = u2, u ≥ 0

13.14 a. x = uu2v2 + 2uv, y = vu

Section 14

14.1 a. Δ = 1

c. Δ = −a2 ≠ 0

e. Δ = 0

g. Δ = 1

i. Δ = 0

k. Δ = 0

14.2 a. Δ = −4; x = Imagev, y = Imageu; Δ′ = −Image

c. Image

14.3 a. v = − u

c. v = −3u

14.4 a. F−1(e, 2e) is the line x + y = e

14.6 a. φ = −θ

c. φ = θ + π

e. φ = θImageπ

14.8 a. c. x2 + y2R2; Δ = 1

e. x2 + y2R2/2; Δ = 2

14.9 c. (0, 0), (a, c), (b, d)

14.10 a. 2

14.11 b. A = a2 + c2, B = ab + cd, C = b2 + d2

c. AC − B2 = (adbc)2

14.14 a. (—1, 0)

14.17 Δ = ±1

14.18 b. Δ = adbc ≠ 0

14.22 a. F(Image x, yImage ) = F(xImage 1, 0Image + yImage 0, 1Image ) = xF(Image 1, 0Image ) + yF(Image 0, 1Image )

14.24 b. The equation in part a satisfied by any characteristic value is quadratic and can have at most two roots.

d. If ad − bc < 0, the equation satisfied by λ has positive discriminant. If a ray in the x, y plane rotates in the counterclockwise direction, and the image ray in the clockwise direction, then at some point they will have the same direction.

14.25 a. C is the image of the unit circle under a nonsingular linear transformation.

Section 15

15.1 a. Image

c. Image

e. Image

g. Image

15.4 The product of the determinants can be zero only if one of the determinants is zero.

15.7 a. u = (xy)/Image , v = (x + y)/Image

c. u = −y, v = −x

15.8 a. y = x

15.9 The line y = (tan Imageπ)x:

15.10 a.Image π

c. Reflection in the line y = −x

15.15 a. A dilation of Image and rotation through −Image π

c. A dilation of 5 and rotation through α = arc tan ( −Image ), 0 < α < π

15.17 a. Horizontal stretching by a factor of λι

c. Projection of entire plane onto the y axis along lines parallel to the x axis, followed by reflection in the x axis.

15.26 Use the fact that the determinant of a product of matrices is the product of the determinants.

Section 16

16.1 a. Image

c. Image

e. Image

g. Image

i. Image

k. Image

16.2 a. 1; nowhere

c. 9(x2 + y2)2; (x, y) = (0, 0)

e. −2e2x; nowhere

g. −2x2ex2+xy; x = 0

i. sin2 x cos2 y − cos2 x sin2 y = sin (x + y) sin(xy); x + y = 2πn or x − y = 2πn, n an integer

k. 0; everywhere

16.5 If Fk is given by u = fk(x, y), v = gk(x, y), then f1 and f2 have the same gradient, and hence differ by a constant. The same is true for g1 and g2.

16.6 a. dF is the linear transformation with matrix Image.

16.7 a. Image

16.9 F maps (1, Image) onto (—8, 0); Image is a dilation by factor of 12 composed with rotation through Imageπ.

16.11 The image is a horizontal ray to the right of (0, 1).

16.12 a. Image

c. Orientation-preserving if f′(x0) and g′(y0) have the same sign; orientation−reversing if opposite signs.

e. |f′(x0)| and |g′(y0)| represent horizontal and vertical stretching at (x0, y0).

16.14 a. 1/e

c. Image

16.16 C regular means that the tangent vector is never zero. F regular means that dF maps nonzero vectors into nonzero vectors, hence vectors tangent to Γ are never zero.

Section 17

17.1 a. zx(1, 0) = 2, zy(1, 0) = 0

c. zx(0, 0) = e, zy(0, 0) = 0

17.2 a. 2cfu

17.6 a. Image

17.7 a. 1

c. e2

e. 4e(1 + π)

17.11 a. F(0, 0) = (1, 1); xu = Image, xv = Image, yu = Image, yv = −Image

c. F(0, 0) = (0, 0); xu = 1, xv = 0, yu = 0, yv = 1

e. F(0, 0) = (1, 0); xu = 1, xv = 0, yu = 0, yv = 1

g. F(0, 0) = (0, 0); = 1, xu = 1, yu = 0, yv = 1

17.12 a. x = Image(log u + log v), y = Image(log u − log v); u > 0, v > 0

c. x = uv3, y = v; the whole plane

e. x = Image log (u2 + v2), y = arc tan v/u; u > 0, for example

17.14 a. A differentiable function f(x) has a differentiable inverse in some neighborhood of x0 if and only if f'(x0) ≠ 0.

Section 18

18.1 a. Dependent; (u − 1)(v − 1) = 1

c. Image

e. Image

g. Dependent; u = 2v

i. Image

18.3 a. If f(x, y) ≡ 0, then Eq. (18.2) holds with λ = 1, μ = 0.

c. Suppose f(x, y), g(x, y) are linearly dependent. If f(x, y) Image 0, choose c = 0, and f(x, y) ≡ cg(x, y); if g(x, y) ≡ 0, then g(x, y) = 0 · f(x, y); if neither f nor g is ≡ 0, use part b. Conversely, if f(x, y) ≡ cg(x, y) use λ = 1, μ = −cin Eq. (18.2).

18.6 b. The image lies on the curve u = F(t), v = G(t).

18.7 a. Imageπ

c. cos−1(2/Image ) or tan−1 Image.

18.8 a. Diffeomorphism; conformai.

c. Diffeomorphism; not conformal

e. Not a diffeomorphism since (x0, y0) and (x0, y0 + 2π) map into same point

g. Not a diffeomorphism since (u, v)/(x, y) = 0 at (Image , Image)

i. A conformai diffeomorphism

Section 19

19.1 a. 0; solenoidal

c. φ'(x) + ψ'(y); solenoidal ⇔ φ(x) = ax ψ(y) = −ay, a constant

e. 2y; not solenoidal

g. 4xy + 6x2; not solenoidal

i. 2 cos x cos y; not solenoidal

k. 2ex cos y; not solenoidal

19.2 a. Conservative; ax + by

c. Image

e. Conservative; x2y

g. Not conservative

i. Conservative; −cos x cos y

k. Not conservative

19.3 a, f, l; also part b if a + b = 0; part c if of the form Imageax, −ayImage ; and part d if of the form Imageay, axImage

19.9 a. Image1, 0Image

c. 2Image x, yImage

e. (1/x2)Imagey, xImage

Section 20

20.1 a. (a2 + b2)uXX + 2(ac + bd)uXY + (c2 + d2)uYY

c. (X2 + Y2)(uXX + uYY)

20.6 a. Image

c. uθ = −rvr, vθ = rur

20.9 u = + B, A and B constants, θ = arc tan (y/x).

20.12 Image

20.14 a. A = a cos2 α + 2b cos α sin α + c sin2 α

B = −a cos α sin α + b(cos2 α − sin2 α) + c cos α sin α

C = a sin2 α − 2b cos α sin α + c cos2 α

20.15 u(x, y) = G(3xy) + H(3yx)

20.16 c. u(x, y) = g(y) + xh(y)

20.18 UY = Uy cos2 α + (vyux) cos α sin αvx sin2 α

VX = −uy sin2 α + (vyux) cos α sin α + vx cos2 α

20.19 a. (uxvy) cos 2a + (uy + vx) sin 2α

c. uyvx

Chapter four

Section 21

21.1 a.Image

c. Image

21.3 Image

21.4 a. Image

c. 1 − Imageπ

e. 0

21.5 1

c. 1

e. −1

21.6 a. Imageπ

c.Image π

21.7 a. 0

c. 2πab

e.πab

g. 0

21.9 −2πab

21.13 a. Image/2

c. Imageπ

e. Imageab(a2 + ab + b2)/(a + b)

21.14 ds/dτ = (ds/dt)|dt/|

21.16 a. 3π

c. Image

e. 1

21.17 a. Image

c. 13π/3

e. 2πa + π sinh 2a

g. 4πa2

21.18 a. Image

c. πImage

21.19 a. Image

c. Image

21.20 a. Image

c. Image

21.21 c. (2πa)(2πb)

21.22 a. π

c. 1

21.23 a. Image

c. Image

Section 22

22.1 a. 0

c. 1

e. 2e+1 − 1

22.4 a. Image

c. 11

22.5 a. Image

c. −11

22.6 c. 2ab

22.8 a. x2y3 + x3y2

c. Image

22.9 a. 4

c. log Image − 1

22.11 a. py = 3 ≠ qx = 6; f = 3xy2y3

22.13 a. v = x + y

c. v = cos x cosh y

e. v = ex sin y

22.15 a. −1

c. −14

24.7 a. πt

24.9 b. 2π2a2b

d. π

24.10 c. Image

24.12 a. Imagea2

c. (c5a5b5)/15, where c2 = a2 + b2

e. (0, 3πa/16)

g. Image

24.17 a. h = x3y2/6

c. h = (x2 + y2)5/2/15

24.19 Image(e − 1)

24.22 a. 0 ≤ y ≤ 2 − 2x, 0 ≤ x ≤ 1

c. Image

e. eyx ≤ 1 + (e − 1)y, 0 ≤ y ≤ 1

24.23 a. Image

c. 2

Section 25

25.1 a. (cd)(ba)

c. 0

25.3 Image

25.4 a. 12

c. 0

25.5 a. Image

c. Image

25.6 a. 2π

25.7 a. 2π; the integral over each side is the angle subtended by that side at (X, Y).

25.9 a. Image

c. y log x + log y − 1/x

25.15 a. Imageab

c. 0

25.17 a. 2πk

Section 26

26.1 a. 0

c. πab

26.2 a. x = 2 cos t, y = 3 sin t, 0 ≤ t ≤ 2π

c. C1 : x = 3 cos t, y = 3 sin t, 0 ≤ t ≤ 2π

C2 : x = 1 + cos t, y = −sin t, 0 ≤ t ≤ 2π

e. Image

26.3 a. 0

c. 5π

e. 4

26.4 a. πab

c. a2(2 − Imageπ)

e. Imageπa2

26.7 a. Image

c. Image

Section 27

27.1 a. Image

c. 2/π

e. a2/12

g. ab/4

27.2 a. Image

Section 23

23.1 a. h(t) = 1 − t, 0 ≤ t ≤ 1

c. h(t) = tt2, 0 ≤ t ≤ 1

e. Image

g. h(t) = 2 sinh t, 0 ≤ t ≤ 2

i. h(t) = 2(1 − |t|), −1 ≤ t ≤ 1

k. Image

m. Image

o. Image

23.2 a. Image

c. Image

e. Image

g. 2(cosh 2 − 1)

i. 2

k. 5

m. 5π

o. 12 − π

23.3 a. h(t) = 1 − t, 0 ≤ t ≤ 1

c. Image

e. Image

g. Image

i. h(t) = 2 − t, 0 ≤ t ≤ 2

k. Image

m. Same answer as Ex. 23.1m

o. Image

23.5 a. Image

c. Image

23.6 c. Image

23.8 Image

23.9 Imageπa2

23.10 a. Not bounded

c. Not bounded and does not consist of a domain together with its boundary

e. Does not consist of a domain together with boundary (a domain is connected)

23.14 a. Image

Section 24

24.1 a. 98

c. Image

24.2 a. Image

24.3 a. 0

24.4 a. Image

24.5 a. Image

c. abc/6

24.6 b. Imageπbc

27.3 a. (e − 1)/2

27.6 Possible choices are:

a. (Image , Image)

c. (1, 2/π)

e. (a/4, a/3)

g. (a/2, b/2)

27.8 4 + 1/4k2

27.10 a. Image

27.11 a. Image

27.20 a. Image

c. Image

e. Image

Section 28

28.1 a. Image

c. Image

e. Image

28.2 a. Imageπ

c. Image

e. Image

28.3 a. ( − 4/3π, 0)

28.4 a. Image

28.5 a. Image

c. Image

28.7 a. Image

28.8 a. Image

c. Image

28.9 (e − 1)2

28.11 a. u = 2x + y, v = x + 3y

28.12 π(1 − eR2)/6

28.13 c. Image

28.16 a. π

c. Imageπ

e. Image