Microscopic Reversibility - Mechanisms and Methods of Determining Them - Introduction - March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition (2013)

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition (2013)

Part I. Introduction

Chapter 6. Mechanisms and Methods of Determining Them

6.H. Microscopic Reversibility

In the course of a reaction, the nuclei and electrons assume positions that at each point correspond to the lowest free energies possible. If the reaction is reversible, these positions must be the same in the reverse process, too. This means that the forward and reverse reactions (run under the same conditions) must proceed by the same mechanism. This is called the principle of microscopic reversibility. For example, if in a reaction AB there is an intermediate C, then C must also be an intermediate in the reaction BA. This is a useful principle since it enables one to know the mechanism of reactions in which the equilibrium lies far over to one side. Reversible photochemical reactions are an exception, since a molecule that has been excited photochemically does not have to lose its energy in the same way (Chap 7).